首页   按字顺浏览 期刊浏览 卷期浏览 Effects of Profound Anemia on Brain Tissue Oxygen Tension, Carbon Dioxide Tension, and ...
Effects of Profound Anemia on Brain Tissue Oxygen Tension, Carbon Dioxide Tension, and pH in Rabbits

 

作者: Yasuhiro Morimoto,   Mali Mathru,   Julian Martinez-Tica,   Mark Zornow,  

 

期刊: Journal of Neurosurgical Anesthesiology  (OVID Available online 2001)
卷期: Volume 13, issue 1  

页码: 33-39

 

ISSN:0898-4921

 

年代: 2001

 

出版商: OVID

 

关键词: Brain tissue PO2;Cerebral blood flow;Cerebral metabolic rate;Hemodilution

 

数据来源: OVID

 

摘要:

This study sought to determine the maximum tolerable limit of anemia for the brain during halothane anesthesia. Using a multiparameter sensor, we continuously monitored brain tissue oxygen tension (PO2), carbon dioxide tension (PCO2), and pH during profound hemodilution and subsequent transfusion. Twelve New Zealand White rabbits were anesthetized, intubated, and mechanically ventilated at a fraction of inspired oxygen (FiO2) of 21% to produce an arterial carbon dioxide tension (PaCO2) of 35 to 40 mm Hg. The femoral artery was cannulated to continuously monitor arterial blood pressure and to intermittently measure arterial blood gases. The electroencephalogram (EEG) was recorded throughout the course of the study. A fiberoptic sensor was inserted into the brain for the continuous measurement of brain PO2, PCO2, pH, and temperature. Cerebral blood flow (CBF) was measured by the hydrogen clearance method. Severe anemia was induced by repeatedly withdrawing 50-mL aliquots of blood and infusing an equal volume of 6% hetastarch. This procedure was performed four times for each rabbit. After the forth blood draw and fluid infusion, a total of 60 mL of packed red blood cells were transfused. Upon completion of the hemodilution, the hemoglobin concentration was 2.4 ± 0.3 g/dL (mean ± SEM). Brain tissue PO2decreased from 27 ± 3 mm Hg to a minimum of 12 ± 2 mm Hg. Brain tissue pH also decreased from 7.22 ± 0.03 to 7.12 ± 0.05 and returned to the baseline value with transfusion. Brain PCO2did not change significantly during the experiment. Cerebral blood flow increased from 37 ± 3 to 66 ± 15 mL × 100g−1× min−1during hemodilution and returned to baseline after infusion of red blood cells. There was some loss of EEG amplitude and the calculated cerebral metabolic rate (CMRO2) decreased from 4.3 ± 0.6 to 1.9 ± 0.3 mL × 100g−1× min−1at the most profound level of anemia. This is the first report of which the authors are aware of continuous monitoring of brain tissue pH, PCO2, and PO2during profound hemodilution and transfusion. Hemodilution results in a decrease in brain tissue PO2. Increases in CBF and oxygen extraction can only partially compensate for the decreased oxygen carrying capacity of the blood. Decreases in brain tissue PO2, pH, CMRO2, and a loss of EEG amplitude suggest that the maximum tolerable limit of hemodilution was achieved in this study.

 

点击下载:  PDF (166KB)



返 回