首页   按字顺浏览 期刊浏览 卷期浏览 Convective Fuel Droplet Burning Accompanied by an Oxidizer Droplet
Convective Fuel Droplet Burning Accompanied by an Oxidizer Droplet

 

作者: TSUNG LEO JIANG,   CHAO-CHUNG LIU,   WEI-SHIN CHEN,  

 

期刊: Combustion Science and Technology  (Taylor Available online 1994)
卷期: Volume 97, issue 4-6  

页码: 271-301

 

ISSN:0010-2202

 

年代: 1994

 

DOI:10.1080/00102209408935381

 

出版商: Taylor & Francis Group

 

关键词: Bipropellants;droplet combustion;droplet interaction;hypergolic propellants

 

数据来源: Taylor

 

摘要:

The burning process of a fuel droplet adjacent to an oxidizer droplet under an oxidizing convective Rowis studied numerically by a quasi-steady body-fitted computation. Hypergolic propellants such as monomethyl hydrazine and nitrogen tetroxide served as the fuel oxidizer sources, respectively. The computation took into account the variable properties of bipropellant species and products, with a singlestep global finite-rate chemical reaction being assumed for the gas-phase combustion. The results obtained from the present numerical analysis show that multiple flame-configurations and vaporization-rates characteristic of temperature-sensitive, high-activation-energy Arrhenius kinetics, occurring under certain flow conditions for n-octane droplet burning in air flow(Jiang et al.,1993), are not exhibited by the present hypergolic propellants, which are characterized by a low-activation-energy of reaction. The oxidizer droplet adjacent to the fuel droplet substantially influences both flame configuration and the vaporizationrates of the fuel droplet by providing extra oxidizer vapor as well as changing the surrounding thermal-Row structures. At low Reynolds numbers (> 20), the fuel droplet vaporization rate is increased due to either a leading, or a trailing oxidizer droplet. Under these conditions, the fuel droplet vaporization rate is further increased by either a larger oxidizer droplet or smaller droplet center distance; results similar to those for biopropellant droplet burning in a stagnant environment. At high Reynolds numbers (< 20),the fuel droplet vaporization rate is not as significantly influenced by the accompanying oxidizer droplet as that at low Reynolds numbers. An excessively large leading oxidizer droplet, at Reynolds numbers higher than 60, results in a substantially lower fuel droplet vaporization rate than that exhibited by single droplet burning.

 

点击下载:  PDF (1546KB)



返 回