首页   按字顺浏览 期刊浏览 卷期浏览 Simultaneous real‐time spectroscopic ellipsometry and reflectance for monitoring...
Simultaneous real‐time spectroscopic ellipsometry and reflectance for monitoring thin‐film preparation

 

作者: Ilsin An,   H. V. Nguyen,   A. R. Heyd,   R. W. Collins,  

 

期刊: Review of Scientific Instruments  (AIP Available online 1994)
卷期: Volume 65, issue 11  

页码: 3489-3500

 

ISSN:0034-6748

 

年代: 1994

 

DOI:10.1063/1.1144527

 

出版商: AIP

 

数据来源: AIP

 

摘要:

An expansion of the capabilities of high‐speed, multichannel spectroscopic ellipsometry (SE) is described that involves simultaneous measurement of the reflectance spectrum along with the two spectra in the ellipsometric angles (&psgr;, &Dgr;). Previously, a novel rotating‐polarizer spectroscopic ellipsometer has been perfected that employs a photodiode array detector for high‐speed acquisition of (&psgr;, &Dgr;) spectra, designed for real‐time studies of thin‐film growth. For a polarizer angular rotation frequency of &ohgr;0, the (&psgr;, &Dgr;) values at a given photon energy are deduced from the 2&ohgr;0Fourier components of the detector irradiance, normalized by the dc component. Athirdparameter, the weighted reflectanceRA, can be obtained from the dc component and from a calibration based on the known optical properties of the substrate measured prior to film growth. With (&ohgr;0/2&pgr;)=12.5 Hz, three‐parameter data sets, [&psgr;(h&ngr;), &Dgr;(h&ngr;),RA(h&ngr;); 1.5≤h&ngr;≤4.5 eV], can be acquired with a time resolution as short as 40 ms. AlthoughRAprovides complementary information to (&psgr;, &Dgr;), it has yet to be exploited in conjunction with real‐time SE until this study. A resilient analysis approach, based on mathematical inversion and least‐squares fitting of the real‐time three‐parameter data sets, is designed to yield the film dielectric functions and thicknesses independently at each time during the early stages of thin‐film growth. The three‐parameter approach has been applied successfully in studies of amorphous silicon (a‐Si:H) thin films prepared by plasma‐enhanced chemical vapor deposition, and aluminum and silver films prepared by physical vapor deposition. For thea‐Si:H films,RA(h&ngr;) exhibits deviations as large as ∼3% from that predicted in modeling (&psgr;, &Dgr;) alone. The deviations result from light scattering by plasma particulates, and we show how additional information can be extracted from the spectral dependence of the scattering loss.

 

点击下载:  PDF (1783KB)



返 回