首页   按字顺浏览 期刊浏览 卷期浏览 Injury‐induced Regulation of Ciliary Neurotrophic Factor mRNA in the Adult Rat Brain
Injury‐induced Regulation of Ciliary Neurotrophic Factor mRNA in the Adult Rat Brain

 

作者: Nancy Y. Ip,   Stanley J. Wiegand,   Joanne Morse,   John S. Rudge,  

 

期刊: European Journal of Neuroscience  (WILEY Available online 1993)
卷期: Volume 5, issue 1  

页码: 25-33

 

ISSN:0953-816X

 

年代: 1993

 

DOI:10.1111/j.1460-9568.1993.tb00201.x

 

出版商: Blackwell Publishing Ltd

 

关键词: neurotrophic factor;trauma;astrocytes;BDNF;NT‐3

 

数据来源: WILEY

 

摘要:

AbstractCiliary neurotrophic factor (CNTF) is a pleiotropic molecule that acts as a neurotrophic factor for a wide range of embryonic neurons as well as a differentiation factor for sympathetic neuroblasts and O2A progenitor cells in culture. CNTF messenger RNA (mRNA) is present at very low levels in the normal adult rat central nervous system (CNS), but is dramatically up‐regulated after an aspiration lesion of dorsal hippocampus and overlying cortex, in the area coincident with glial scar. The increased level of CNTF mRNA in lesioned hippocampus is maximal by 3 days and is sustained for up to 20 days, the longest time point examined. In contrast, mRNA levels for brain‐derived neurotrophic factor (BDNF) and neurotrophin‐3 (NT‐3) were slightly decreased during the same period.In situhybridization experiments revealed that cells expressing CNTF mRNA were concentrated at the margin of the wound, and also present within the gelfoam which filled the lesion cavity. This distribution of CNTF‐expressing cells corresponded very closely to that of cells expressing high levels of glial fibrillary acidic protein mRNA at the wound site. Paralleling the observed increase in CNTF mRNA, increased levels of CNTF‐like neurotrophic activity were apparent in soluble extracts of the lesioned tissues. This neurotrophic activity for ciliary ganglion neurons was completely blocked by the addition of neutralizing antiserum against CNTF. Basic fibroblast growth factor, which has been shown by others to increase after a similar lesion paradigm (Frautschyet al., Brain Res.,553, 291–299, 1991), does not contribute appreciably to this trophic activity. We conclude that CNTF is markedly increased as a function of injury to the CNS and that its expression is most likely restricted to reactive astrocytes in t

 

点击下载:  PDF (2193KB)



返 回