首页   按字顺浏览 期刊浏览 卷期浏览 Analytical theory of the destruction terms in dissipation rate transport equations
Analytical theory of the destruction terms in dissipation rate transport equations

 

作者: Robert Rubinstein,   Ye Zhou,  

 

期刊: Physics of Fluids  (AIP Available online 1996)
卷期: Volume 8, issue 11  

页码: 3172-3178

 

ISSN:1070-6631

 

年代: 1996

 

DOI:10.1063/1.869090

 

出版商: AIP

 

数据来源: AIP

 

摘要:

Modeled dissipation rate transport equations are often derived by invoking various hypotheses to close correlations in the corresponding exact equations. D. C. Leslie [ModernDevelopmentsintheTheoryofTurbulence(Oxford University, Oxford, 1972)] suggested that these models might be derived instead from Kraichnan’s [J. Fluid Mech.47(1971)] wavenumber space integrals for inertial range transport power. This suggestion is applied to the destruction terms in the dissipation rate equations for incompressible turbulence, buoyant turbulence, rotating incompressible turbulence, and rotating buoyant turbulence. Model constants likeC&Vegr;2are expressed as integrals; convergence of these integrals implies the absence of Reynolds number dependence in the corresponding destruction term. The dependence ofC&Vegr;2on rotation rate emerges naturally; sensitization of the modeled dissipation rate equation to rotation is not required. A buoyancy related effect which is absent in the exact transport equation for temperature variance dissipation, but which sometimes improves computational predictions, also arises naturally. The time scale in the modeled transport equation depends on whether Bolgiano or Kolmogorov inertial range scaling applies. A simple extension of these methods leads to a preliminary dissipation rate equation for rotating buoyant turbulence. ©1996 American Institute of Physics.

 

点击下载:  PDF (131KB)



返 回