首页   按字顺浏览 期刊浏览 卷期浏览 Ultrahigh time-resolution vibrational spectroscopy of shocked molecular solids
Ultrahigh time-resolution vibrational spectroscopy of shocked molecular solids

 

作者: Selezion A. Hambir,   Jens Franken,   David E. Hare,   Eric L. Chronister,   Bruce J. Baer,   Dana D. Dlott,  

 

期刊: Journal of Applied Physics  (AIP Available online 1997)
卷期: Volume 81, issue 5  

页码: 2157-2166

 

ISSN:0021-8979

 

年代: 1997

 

DOI:10.1063/1.364269

 

出版商: AIP

 

数据来源: AIP

 

摘要:

A method is described for obtaining ultrahigh time-resolution vibrational spectra of shocked polycrystalline materials. A microfabricated shock target array assembly is used, consisting of a polymer shock generation layer, a polymer buffer layer, and a thin sample layer. A near-IR pump pulse launches the shock. A pair of delayed visible probe pulses generate a coherent anti-Stokes Raman (CARS) spectrum of the sample. High-resolution Raman spectra of shocked crystalline anthracene are obtained. From the Raman shock shift, the shock pressure is determined to be 2.6 GPa. The rise time of shock loading is 400 ps. This rise time is limited by hydrodynamics of the shock generation layer. The shock velocity in the buffer layer is found to be 3.7 (±0.5) km/s, consistent with the observed shock pressure. As the shock propagates through a few &mgr;m of buffer material, the rise time and pressure can be monitored. The rise time decreases from ∼800 to ∼400 ps over the first 6 &mgr;m of travel, and the pressure begins to decline after about 12 &mgr;m of travel. The high-resolution CARS method permits detailed analysis of the vibrational line shape. Simulations of the CARS spectra show that when the shock front is in the crystal layer the spectral linewidths are inhomogeneously broadened by the distribution of pressures in the layers. When the crystal layer is behind the front, the spectral linewidth can be used to estimate the temperature. The increase of the spectral width from the ambient 4 to ∼6.5 cm−1is consistent with the expected temperature increase of ∼200°. ©1997 American Institute of Physics.

 

点击下载:  PDF (211KB)



返 回