首页   按字顺浏览 期刊浏览 卷期浏览 Hamiltonian dynamics of purely affine fields (EINSTEIN‐SCHRÖDINGERTheory)
Hamiltonian dynamics of purely affine fields (EINSTEIN‐SCHRÖDINGERTheory)

 

作者: H.‐J. Treder,  

 

期刊: Astronomische Nachrichten  (WILEY Available online 1994)
卷期: Volume 315, issue 1  

页码: 1-9

 

ISSN:0004-6337

 

年代: 1994

 

DOI:10.1002/asna.2103150102

 

出版商: WILEY‐VCH Verlag

 

关键词: Hamiltonian dynamics;unified field theory;Cosmological constant

 

数据来源: WILEY

 

摘要:

AbstractThe Lagrangian of the general‐relativistic affine field theory of the non‐symmetric connection field Γiklis Schrödinger scalar density\documentclass{article}\pagestyle{empty}\begin{document}$ H = \frac{2}{\lambda }\sqrt { - \det [R} _{ik} ] $\end{document}, and the field variables (canonical coordinates) are Einstein's affine tensorsUmnl= Γlmn‐ δnlΓrmn. The field equations are the Einstein‐Schrödinger equations\documentclass{article}\pagestyle{empty}\begin{document}$$ \frac{{\delta H}}{{\delta U^i _{mn} }} = N^{mn} _i = 0 $$\end{document}The minors\documentclass{article}\pagestyle{empty}\begin{document}$$ \frac{{\partial H}}{{\partial R_{mn} }} = G^{mn} = \sqrt { - gg^{mn} } $$\end{document}give by definitongmn= λ−1Rmn, and λ becomes the cosmological constant. The Hamiltonian density is theV00‐component of the Einstein energy‐momentum complex\documentclass{article}\pagestyle{empty}\begin{document}$$ V_i ^k = \frac{{\partial H}}{{\partial U^i _{mn,k} }}U^i _{mn,i} = - \frac{1}{{2\lambda ^2 }}HR^{mn} \partial _i^k U^i _{mn.i} $$\end{document}and the tensor‐density components\documentclass{article}\pagestyle{empty}\begin{document}$$ \gamma ^{mn} _i = - \frac{1}{{2\lambda ^2 }}HR^{mn} \partial _i^0 = - \sqrt { - gg^{mn} } \partial _i^0 = g^{mn} \partial _1^0 $$\end{document}are the canonically conjugated momentum densities of the field coordinatesUlmn. The canonical equations are\documentclass{article}\pagestyle{empty}\begin{document}$$ ( - g)^{ - \frac{1}{2}} N^{mn} _{iV_0^0 } = 0 $$\end{document}, and we have no constraints. The affine field theory is invariant with respect to all transformations which preserve the Levi‐Civita parallelism (Einstein's unifiedT‐Agroup), and the field equations possess transposition invariance: WithŨlmn=Ulnmwe getR̃mn=Rnm,g̃mn=gnm, andÑmnl=Unml.The symmetry conditions Γimn= Γinmreduce the space to the general‐relativistic Einstein spaces withRik=Rki. The equationRik= λgikyields Γikl= {ikl}, and the pathes of test particles define geodes

 

点击下载:  PDF (441KB)



返 回