首页   按字顺浏览 期刊浏览 卷期浏览 Sinuous instability of a planar air jet: Propagation parameters and acoustic excitation
Sinuous instability of a planar air jet: Propagation parameters and acoustic excitation

 

作者: A. W. Nolle,  

 

期刊: The Journal of the Acoustical Society of America  (AIP Available online 1998)
卷期: Volume 103, issue 6  

页码: 3690-3705

 

ISSN:0001-4966

 

年代: 1998

 

DOI:10.1121/1.423089

 

出版商: Acoustical Society of America

 

数据来源: AIP

 

摘要:

The sinuous instability wave of a planar air jet is excited by localized acoustic flow across the nozzle. Phase velocity and the growth exponent are found from synchronous hot-wire measurements made beyond the excited region, where the profile is approximately sech-squared. In the observed range of scaled radian frequency, 0.02–1.33 (the stability limit), results agree with real-frequency (spatially growing) analysis but not with complex-frequency (temporally growing) analysis. The latter predicts smaller phase velocity at low frequencies and has been questioned in edgetone analysis. In further tests, the acoustic driving signal is made independent of downstream distance, as in an organ pipe. The jet deflection is then the sum of acoustic convection and of the instability wave, summing to zero at the nozzle, as proposed by Fletcher, Elder, and others. The instability-wave theory applies to linear behavior in the inviscid limit and therefore to a hypothetical nonspreading jet. The local velocity profile width must be considered in relating to a physical jet. In a flue organ pipe oscillating at equilibrium amplitude the stability-wave theory is not applicable near the lip, where the laminar flow assumed in the theory disappears and the jet deflection exceeds the range of linear behavior. Direct sound generation by the jet is investigated briefly.

 

点击下载:  PDF (346KB)



返 回