首页   按字顺浏览 期刊浏览 卷期浏览 Ion mixing of III‐V compound semiconductor layered structures
Ion mixing of III‐V compound semiconductor layered structures

 

作者: W. Xia,   S. A. Pappert,   B. Zhu,   A. R. Clawson,   P. K. L. Yu,   S. S. Lau,   D. B. Poker,   C. W. White,   S. A. Schwarz,  

 

期刊: Journal of Applied Physics  (AIP Available online 1992)
卷期: Volume 71, issue 6  

页码: 2602-2610

 

ISSN:0021-8979

 

年代: 1992

 

DOI:10.1063/1.351079

 

出版商: AIP

 

数据来源: AIP

 

摘要:

Compositional disordering of III‐V compound superlattice structures has received considerable attention recently due to its potential application for photonic devices. The conventional method to induce compositional disorder in a layered structure is to implant a moderate dose of impurity ions (∼1015/cm2) into the structure at room temperature, followed by a high‐temperature annealing step (this process is referred to as IA here). Ion irradiation at room temperature alone does not cause any significant intermixing of layers. The subsequent high‐temperature annealing step tends to restrict device processing flexibility. Ion mixing (IM) is capable of enhancing compositional disordering of layers at a rate which increases exponentially with the ion irradiation temperature. As a processing technique to planarize devices, ion mixing appears to be an attractive technology. In this work, we investigate compositional disordering in the AlGaAs/GaAs and the InGaAs/InP systems using ion mixing. We found that the ion mixing behavior of these two systems shows a thermally activated regime as well as an athermal regime, similar to that observed for metal‐metal and metal‐semiconductor systems. Ion mixing is observed to induce compositional disordering at significantly lower temperatures than that for the IA process. We have compared the two processes in terms of five parameters: (1) irradiation temperature, (2) dose dependence, (3) dose rate dependence, (4) annealing, and (5) ion dependence (including electrical effects and mass dependence). We found that the IM process is more efficient in utilizing the defects generated by ion irradiation to cause disordering. Both the physical mechanism of ion mixing and possible device implications will be discussed.

 

点击下载:  PDF (1154KB)



返 回