首页   按字顺浏览 期刊浏览 卷期浏览 The Viscosity of Dilute Solutions of Long‐Chain Molecules. V. Dependence on the ...
The Viscosity of Dilute Solutions of Long‐Chain Molecules. V. Dependence on the Solvent

 

作者: Maurice L. Huggins,  

 

期刊: Journal of Applied Physics  (AIP Available online 1943)
卷期: Volume 14, issue 5  

页码: 246-248

 

ISSN:0021-8979

 

年代: 1943

 

DOI:10.1063/1.1714982

 

出版商: AIP

 

数据来源: AIP

 

摘要:

Staudinger's relation between &eegr;sp/cand the molecular weight of a chain molecule solute should theoretically apply only if the chain molecules are kinked in a purely random way. With actual solutions, one would expect the kinked chains to be more or less tightly coiled than for purely random kinking, depending on whether the average cohesive energy density betweenlikeunits (solvent molecules and solute submolecules) is greater or less than that betweenunlikeunits. The tighter the coiling, the less is the specific viscosity, for a given solute molecule chain length. This cohesive energy density difference is closely related to &mgr;1, the constant, characteristic of a given solute‐solvent system, which enters into the equations recently derived by the author for the activities of the components and for related quantities, such as osmotic pressures, solubilities, and precipitabilities. From this relationship, it has been shown that the &eegr;sp/cvalues for solutions of a given polymer in different solvents should, in general, be symbatic with the proportion of a poor solvent which is required to produce precipitation of a solid phase. Data from the literature on polystyrene and polybutene solutions are in agreement with this conclusion.

 

点击下载:  PDF (214KB)



返 回