首页   按字顺浏览 期刊浏览 卷期浏览 Auger voltage contrast imaging for the delineation of two-dimensional junctions in cros...
Auger voltage contrast imaging for the delineation of two-dimensional junctions in cross-sectioned metal–oxide–semiconductor devices

 

作者: W. S. M. Werner,   H. Lakatha,   H. E. Smith,   L. LeTarte,   V. Ambrose,   J. Baker,  

 

期刊: Journal of Vacuum Science&Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena  (AIP Available online 1998)
卷期: Volume 16, issue 1  

页码: 420-425

 

ISSN:1071-1023

 

年代: 1998

 

DOI:10.1116/1.589824

 

出版商: American Vacuum Society

 

数据来源: AIP

 

摘要:

A new two-dimensional junction delineation technique named Auger voltage contrast (AVC) is described. AVC is a mapping tool that indicates the dopant type of each point of the cross-sectioned surface by measuring the Auger electron energy shifts that mirror the workfunction differences caused by the built-in junction, i.e., caused by Fermi level differences betweenn- andp-doped silicon. AVC makes use of the dual capabilities of field emission Auger electron spectroscopy instrumentation for spectroscopy at each pixel and for high spatial resolution. A theoretical examination is made of the important practical aspects of this previously observed Auger energy line shift, in particular the effect of surface states on the Fermi level position and the effect of beam-induced electron-hole pair creation and transport. AVC results obtained from cross-sectioned metal–oxide–semiconductor structures are shown to have good agreement with both theory and with one-dimensional secondary ion mass spectroscopy and spreading resistance probe profiles from the same sample. A fast and efficient algorithm has been devised which fits the Auger SiLVVspectrum to that of a reference spectrum obtained from a region of known doping, so that it is possible to make a calculation of the energy shift at each pixel with resolution on the order of 50 meV and in a way that speeds analysis and minimizes storage size.

 

点击下载:  PDF (331KB)



返 回