首页   按字顺浏览 期刊浏览 卷期浏览 Mechanism-Based Inhibition of Cytochrome P450 3A4 by Therapeutic Drugs
Mechanism-Based Inhibition of Cytochrome P450 3A4 by Therapeutic Drugs

 

作者: Shufeng Zhou,   Sui Yung Chan,   Boon Cher Goh,   Eli Chan,   Wei Duan,   Min Huang,   Howard L McLeod,  

 

期刊: Clinical Pharmacokinetics  (ADIS Available online 2005)
卷期: Volume 44, issue 3  

页码: 279-304

 

ISSN:0312-5963

 

年代: 2005

 

出版商: ADIS

 

关键词: Cytochrome P450 inhibitors, general;Enzyme inhibitors, general;Clinical pharmacokinetics;Metabolism

 

数据来源: ADIS

 

摘要:

Consistent with its highest abundance in humans, cytochrome P450 (CYP) 3A is responsible for the metabolism of about 60% of currently known drugs. However, this unusual low substrate specificity also makes CYP3A4 susceptible to reversible or irreversible inhibition by a variety of drugs. Mechanism-based inhibition of CYP3A4 is characterised by nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)-, time- and concentration-dependent enzyme inactivation, occurring when some drugs are converted by CYP isoenzymes to reactive metabolites capable of irreversibly binding covalently to CYP3A4. Approaches usingin vitro,in silicoandin vivomodels can be used to study CYP3A4 inactivation by drugs. Human liver microsomes are always used to estimate inactivation kinetic parameters including the concentration required for half-maximal inactivation (KI) and the maximal rate of inactivation at saturation (kinact).Clinically important mechanism-based CYP3A4 inhibitors include antibacterials (e.g. clarithromycin, erythromycin and isoniazid), anticancer agents (e.g. tamoxifen and irinotecan), anti-HIV agents (e.g. ritonavir and delavirdine), antihypertensives (e.g. dihydralazine, verapamil and diltiazem), sex steroids and their receptor modulators (e.g. gestodene and raloxifene), and several herbal constituents (e.g. bergamottin and glabridin). Drugs inactivating CYP3A4 often possess several common moieties such as a tertiary amine function, furan ring, and acetylene function. It appears that the chemical properties of a drug critical to CYP3A4 inactivation include formation of reactive metabolites by CYP isoenzymes, preponderance of CYP inducers and P-glycoprotein (P-gp) substrate, and occurrence of clinically significant pharmacokinetic interactions with coadministered drugs.Compared with reversible inhibition of CYP3A4, mechanism-based inhibition of CYP3A4 more frequently cause pharmacokinetic-pharmacodynamic drug-drug interactions, as the inactivated CYP3A4 has to be replaced by newly synthesised CYP3A4 protein. The resultant drug interactions may lead to adverse drug effects, including some fatal events. For example, when aforementioned CYP3A4 inhibitors are coadministered with terfenadine, cisapride or astemizole (all CYP3A4 substrates), torsades de pointes (a life-threatening ventricular arrhythmia associated with QT prolongation) may occur.However, predicting drug-drug interactions involving CYP3A4 inactivation is difficult, since the clinical outcomes depend on a number of factors that are associated with drugs and patients. The apparent pharmacokinetic effect of a mechanism-based inhibitor of CYP3A4 would be a function of itsKI,kinactand partition ratio and the zero-order synthesis rate of new or replacement enzyme. The inactivators for CYP3A4 can be inducers and P-gp substrates/inhibitors, confoundingin vitro-in vivoextrapolation. The clinical significance of CYP3A inhibition for drug safety and efficacy warrants closer understanding of the mechanisms for each inhibitor. Furthermore, such inactivation may be exploited for therapeutic gain in certain circumstances.

 

点击下载:  PDF (432KB)



返 回