首页   按字顺浏览 期刊浏览 卷期浏览 Elastic pulsed wave propagation in media with second‐ or higher‐order nonlinearity. Par...
Elastic pulsed wave propagation in media with second‐ or higher‐order nonlinearity. Part I. Theoretical framework

 

作者: Koen E‐A Van Den Abeele,  

 

期刊: The Journal of the Acoustical Society of America  (AIP Available online 1996)
卷期: Volume 99, issue 6  

页码: 3334-3345

 

ISSN:0001-4966

 

年代: 1996

 

DOI:10.1121/1.414890

 

出版商: Acoustical Society of America

 

关键词: SOUND WAVES;WAVE PROPAGATION;NONLINEAR PROBLEMS;ELASTICITY;GREEN FUNCTION;PERTURBATION THEORY;WAVE EQUATIONS;FOURIER ANALYSIS;VELOCITY;ATTENUATION;WAVE FORMS;SEISMOLOGY

 

数据来源: AIP

 

摘要:

A theoretical model is presented that describes the interaction of frequency components in arbitrary pulsed elastic waves during one‐dimensional propagation in an infinite medium with extreme nonlinear response. The model is based on one‐dimensional Green’s function theory in combination with a perturbation method, as has been developed for a general source function by McCall [J. Geophys. Res.99(B2), 2591–2600 (Feb. 1994)]. A polynomial expansion of the equation of state is used in which four orders of nonlinearity in the moduli are accounted for. The nonlinear wave equation is solved for the displacement field at distancexfrom a symmetric ‘‘breathing’’ source with arbitrary Fourier spectrum imbedded in an infinite medium. The perturbation expression corresponds to a higher‐order equivalent of the Burgers’ equation solution for velocity fields in solids. The solution is implemented numerically in an iterative procedure which allows one to include an arbitrary attenuation function. Energy conservation is investigated in the absence of (linear) attenuation, and the notion of a hybrid (linear and nonlinear) dissipation is illustrated. Examples are provided showing the effect of each term in the perturbation solution on the spectral content of the waveform. Finally, the possibility of creating a parametric array for seismic exploration is briefly considered from a theoretical point of view.

 

点击下载:  PDF (303KB)



返 回