首页   按字顺浏览 期刊浏览 卷期浏览 MASS TRANSFER AND PHASE HOLDUP CHARACTERISTICS IN THREE-PHASE FLUIDIZED BEDS
MASS TRANSFER AND PHASE HOLDUP CHARACTERISTICS IN THREE-PHASE FLUIDIZED BEDS

 

作者: DONG-HYUN LEE,   JONG-OH KIM,   SANGDONE KIM,  

 

期刊: Chemical Engineering Communications  (Taylor Available online 1993)
卷期: Volume 119, issue 1  

页码: 179-196

 

ISSN:0098-6445

 

年代: 1993

 

DOI:10.1080/00986449308936115

 

出版商: Taylor & Francis Group

 

关键词: Mass transfer;Flow regime map;Phase holdup;Three-phase fluidized beds.

 

数据来源: Taylor

 

摘要:

The effects of liquid surface tension (42.6 ∼ 72,4 mN/m) and viscosity (1 ∼214mPa • sn), liquid (0.01 ∼0.12m/s) and gas (0.01 ∼0.20m/s) velocities and particle sizes (1 — 8 mm) on phase holdup and mass transfer coefficient ( kLa) have been determined in a 0.142 m-I.D. × 2.0 m-high Plexiglas column. The gas phase holdup increases with liquid velocity, and the rate of increase in gas phase holdup sharply increases with gas velocity in the bed of surfactant solutions. In the beds of 1.0 and 1.7 mm glass beads, the bed contraction occurs whereas in the beds of 2.3 mm glass beads the bed contraction does not occur with an aqueous soltuion of ethanol (σ = 50.4 mN/m). The value of kLa increases with decreasing surface tension (σ ) but it decreases exponentially with increasing liquid viscosity in continuous bubble columns and three-phase fluidized beds. In three-phase fluidized beds with surfactant solutions, kLa increases with gas and liquid velocities and particle size. In three-phase fluidized beds of viscous or surfactant soltuions, kL,a can be estimated in terms of the energy dissipation rate based on the isotropic turbulence theory and a flow regime map is proposed based on the drift flux theory.

 

点击下载:  PDF (523KB)



返 回