首页   按字顺浏览 期刊浏览 卷期浏览 Interaction Between PEVK-Titin and Actin FilamentsOrigin of a Viscous Force Component i...
Interaction Between PEVK-Titin and Actin FilamentsOrigin of a Viscous Force Component in Cardiac Myofibrils

 

作者: M. Kulke,   S. Fujita-Becker,   E. Rostkova,   C. Neagoe,   D. Labeit,   D. Manstein,   M. Gautel,   W. Linke,  

 

期刊: Circulation Research: Journal of the American Heart Association  (OVID Available online 2001)
卷期: Volume 89, issue 10  

页码: 874-881

 

ISSN:0009-7330

 

年代: 2001

 

出版商: OVID

 

关键词: connectin;passive tension;myofibril mechanics;myocardial viscosity;actin binding protein

 

数据来源: OVID

 

摘要:

The giant muscle protein titin contains a unique sequence, the PEVK domain, the elastic properties of which contribute to the mechanical behavior of relaxed cardiomyocytes. Here, human N2-B–cardiac PEVK was expressed inEscherichia coliand tested—along with recombinant cardiac titin constructs containing immunoglobulin-like or fibronectin-like domains—for a possible interaction with actin filaments. In the actomyosin in vitro motility assay, only the PEVK construct inhibited actin filament sliding over myosin. The slowdown occurred in a concentration-dependent manner and was accompanied by an increase in the number of stationary actin filaments. High [Ca2+] reversed the PEVK effect. PEVK concentrations ≥10 &mgr;g/mL caused actin bundling. Actin-PEVK association was found also in actin fluorescence binding assays without myosin at physiological ionic strength. In cosedimentation assays, PEVK-titin interacted weakly with actin at 0°C, but more strongly at 30°C, suggesting involvement of hydrophobic interactions. To probe the interaction in a more physiological environment, nonactivated cardiac myofibrils were stretched quickly, and force was measured during the subsequent hold period. The observed force decline could be fit with a three-order exponential-decay function, which revealed an initial rapid-decay component (time constant, 4 to 5 ms) making up 30% to 50% of the whole decay amplitude. The rapid, viscous decay component, but not the slower decay components, decreased greatly and immediately on actin extraction with Ca2+-independent gelsolin fragment, both at physiological sarcomere lengths and beyond actin-myosin overlap. Steady-state passive force dropped only after longer exposure to gelsolin. We conclude that interaction between PEVK-titin and actin occurs in the sarcomere and may cause viscous drag during diastolic stretch of cardiac myofibrils. The interaction could also oppose shortening during contraction.

 

点击下载:  PDF (353KB)



返 回