首页   按字顺浏览 期刊浏览 卷期浏览 Energy Band Structure of Gallium Antimonide
Energy Band Structure of Gallium Antimonide

 

作者: W. M. Becker,   A. K. Ramdas,   H. Y. Fan,  

 

期刊: Journal of Applied Physics  (AIP Available online 1961)
卷期: Volume 32, issue 10  

页码: 2094-2102

 

ISSN:0021-8979

 

年代: 1961

 

DOI:10.1063/1.1777023

 

出版商: AIP

 

数据来源: AIP

 

摘要:

Resistivity, Hall coefficient, and magnetoresistance were studied forn‐ andp‐type GaSb. The infrared absorption edge was investigated using relatively purep‐type, degeneraten‐type, and compensated samples. Infrared absorption of carriers and the effect of carriers on the reflectivity were studied. The magnetoresistance as a function of Hall coefficient forn‐type samples at 4.2°K gave clear evidence for a second energy minimum lying above the edge of the conduction band; the energy separation is equal to the Fermi energy for a Hall coefficient of 5 cm3/coulomb. The shift of absorption edge inn‐type samples showed that the conduction band has a single valley at the edge, with a density‐of‐state massmd1=0.052m. By combining the results on the edge shift, magnetoresistance, and Hall coefficient, it was possible to deduce: the density‐of‐states mass ratiomd2/md1=17.3, the mobility ratio &mgr;2/&mgr;1=0.06, and the energy separation &Dgr;=0.08 ev between the two sets of valleys at 4.2°K. Anisotropy of magnetoresistance, observed at 300°K, showed that the higher valleys are situated along (111) directions. The infrared reflectivity ofn‐type samples can be used to deduce the anisotropy of the higher valleys; tentative estimates were obtained. Infrared reflectivity gave an estimate of 0.23mfor the effective mass of holes. The variation of Hall coefficient and transverse magnetoresistance with magnetic field and the infrared absorption spectrum of holes showed the presence of two types of holes. Appreciable anisotropy of magnetoresistance was observed in ap‐type sample, indicating that the heavy hole band is not isotropic; this was confirmed by the infrared absorption spectrum of holes. The results on the absorption edge in various samples seemed to indicate that the maximum of the valence band is not atk=0. However, it appears likely that transitions from impurity states near the valence band produced absorption beyond the threshold of direct transitions.

 

点击下载:  PDF (653KB)



返 回