首页   按字顺浏览 期刊浏览 卷期浏览 Slow Recovery of Excitability and the Wenckebach Phenomenon in the Single Guinea Pig Ve...
Slow Recovery of Excitability and the Wenckebach Phenomenon in the Single Guinea Pig Ventricular Myocyte

 

作者: Mario Delmar,   Donald Michaels,   Jose Jalife,  

 

期刊: Circulation Research  (OVID Available online 1989)
卷期: Volume 65, issue 3  

页码: 761-774

 

ISSN:0009-7330

 

年代: 1989

 

出版商: OVID

 

数据来源: OVID

 

摘要:

The cellular mechanisms of Wenckebach periodicity were investigated in single, enzymatically dissociated guinea pig ventricular myocytes, as well as in computer reconstructions of transmembrane potential of the ventricular cell. When depolarizing current pulses of the appropriate magnitude were delivered repetitively to a well-polarized myocyte, rate-dependent activation failure was observed. Such behavior accurately mimicked the Wenckebach phenomenon in cardiac activation and was the consequence of variations in cell excitability during the diastolic phase of the cardiac cycle. The recovery of cell excitability during diastole was studied through the application of single test pulses of fixed amplitude and duration at variable delays with respect to a basic train of normal action potentials. The results show that recovery of excitability is a slow process that can greatly outlast action potential duration (i.e., postrepolarization refractoriness). Two distinct types of subthresbold responses were recorded when activation failure occurred: one was tetrodotoxin- and cobalt-insensitive (type 1) and the other was sensitive to sodium-channel blockade (type 2). Type 1 responses, which were commonly associated with the typical structure of the Wenckebach phenomenon (Mobitz type 1 block), were found to be the result of the nonlinear conductance properties of the inward rectifier current, IK1. Type 2 sodium-channel-mediated responses were associated with the so-called "millisecond Wenckebach." These responses may be implicated in the mechanism of Mobitz type 2 rate-dependent Mock. Single-cell voltage-clamp experiments suggest that variations in excitability during diastole are a consequence of the slow deactivation kinetics of the delayed rectifier, IK. Computer simulations of the ventricular cell response to depolarizing current pulses reproduced very closely all the response patterns obtained in the experimental preparation. It is concluded that postrepolarization refractoriness and Wenckebach periodicity are properties of normal cardiac excitable cells and can be explained in terms of the voltage dependence and slow kinetics of potassium outward currents. The conditions for the occurrence of intermittent activation failure during diastole will depend on the frequency and magnitude of the driving stimulus.

 

点击下载:  PDF (881KB)



返 回