首页   按字顺浏览 期刊浏览 卷期浏览 Laboratory Modeling, Field Study, and Numerical Simulation of Bioremediation of Petrole...
Laboratory Modeling, Field Study, and Numerical Simulation of Bioremediation of Petroleum Contaminants

 

作者: R. J. Livingston, M. R. Islam,  

 

期刊: Energy Sources  (Taylor Available online 1999)
卷期: Volume 21, issue 1-2  

页码: 113-129

 

ISSN:0090-8312

 

年代: 1999

 

DOI:10.1080/00908319950014993

 

出版商: Informa UK Ltd

 

关键词: Bacteria Bioremediation Diesel Kerosene Numerical Modeling Waste Oil

 

数据来源: Taylor

 

摘要:

Historical methods of cleaning up petroleum hydrocarbons from the vadose zone, the capillary zone, and the aquifers are not technically true cleanup technologies but rather transfer techniques. In addition, environmental engineers are realizing that the standard remediation techniques are not entirely effective in removing the hazardous material in a reasonable time frame. Long-chain hydrocarbons such as kerosene, diesel, and waste oil are particularly difficult to remediate using conventional techniques. The use of bioremediation as an alternative remediation technology is fast becoming the technique of choice among many environmental professionals. This method offers substantial benefits not found in other remediation processes. Bioremediation is very cost effective, nondestructive, relatively uncomplicated in imple menting, requires nonspecialized equipment, and can be extremely effective in removing recalcitrant petroleum hydrocarbons. This study researched the availability of viable microbial populations in the arid climate in South Dakota. Exponential growth of the bacteria and the ability of bacteria to degrade long-chain hydrocarbons indicated that healthy populations do exist and could be used to mineralize organic hydrocarbons. Experimental results indicated that bioremediation can be effectively enhanced in landfills as well as in the subsurface using a supply of harmless nutrients. The biodegradation rate can be further enhanced with the use of edible surfactant that helped disperse the petroleum products. Also, the use of hydrogen peroxide enhanced the oxygen availability and increased the degradation rate. Interestingly, the bacterial growth rate was found to be high in difficult-to-biodegrade contaminants, such as waste oil. A numerical simulation program was also developed that describes the bacterial growth in the subsurface along with the reduction in substrate (contamination). Results from this program were found to be consistent with laboratory results. Finally, large-scale laboratory tests were performed. A comparison of these two sets of results revealed an interesting scaling correlation. Recommendations are made for proper scaling up of laboratory results.

 

点击下载:  PDF (276KB)



返 回