首页   按字顺浏览 期刊浏览 卷期浏览 Modeling of pyrolytic laser direct writing: Noncoherent structures and instabilities
Modeling of pyrolytic laser direct writing: Noncoherent structures and instabilities

 

作者: N. Arnold,   P. B. Kargl,   D. Ba¨uerle,  

 

期刊: Journal of Applied Physics  (AIP Available online 1997)
卷期: Volume 82, issue 3  

页码: 1018-1025

 

ISSN:0021-8979

 

年代: 1997

 

DOI:10.1063/1.365865

 

出版商: AIP

 

数据来源: AIP

 

摘要:

Three-dimensional simulations of pyrolytic laser direct writing from gas-phase precursors are presented. They are based on a fast method for the calculation of temperature distributions induced by an energy beam in deposits of arbitrary shape. Analytical approximations, fast Fourier transform, and the multigrid technique are combined in the algorithm. Temperature dependences of the absorptivities and heat conductivities of the deposit and the substrate have been taken into account. Self-consistent modeling of the growth process allows one to explain oscillations in the height and width of lines caused by the feedback between the shape of the deposit, the temperature distribution, and the growth rate. For the deposition of W from an admixture ofWCl6+H2anda-SiO2substrates, the oscillations originate from a sharp increase in the absorptivity of the deposit with temperature. With the deposition of Si fromSiH4,or C fromCH4,C2H2,andC2H4,ontoa-SiO2,the oscillations are related to the large ratio of height/width of the deposit and the increase in temperature on its upper surface. This increase also explains the transition from line-type to fiber-type growth. The hysteresis of this transition with respect to laser power and scanning velocity is explained as well. The same algorithm can be used in the modeling of pyrolytic etching and e-beam microprocessing when the feedback between the temperature distributions and changes in the processing geometry is important. ©1997 American Institute of Physics.

 

点击下载:  PDF (2752KB)



返 回