首页   按字顺浏览 期刊浏览 卷期浏览 Secondary ion mass spectrometry measurements of deuterium penetration into silicon by l...
Secondary ion mass spectrometry measurements of deuterium penetration into silicon by low pressure RF glow discharges

 

作者: GottliebS. Oehrlein,   GeraldJ. Scilla,  

 

期刊: Radiation Effects and Defects in Solids  (Taylor Available online 1989)
卷期: Volume 111-112, issue 1-2  

页码: 299-308

 

ISSN:1042-0150

 

年代: 1989

 

DOI:10.1080/10420158908213004

 

出版商: Taylor & Francis Group

 

数据来源: Taylor

 

摘要:

Using secondary ion mass spectrometry (SIMS) the penetration of deuterium into Si(100) substrates as a result of exposure to deuterium low pressure rf discharges has been determined as a function of exposure time, thermal contact of the Si wafers to the substrate electrode, substrate doping, and discharge pressure. For undoped (100) single crystal Si exposed without intentional heating to a 25 m torr D2plasma for 1 min the deuterium concentration in the near-surface region (0—30 nm) approaches 1021at.cm−3. It drops off with depth, but is still greater than 1017at.cm.−3at a silicon depth of 200 nm. The large penetration depth, the observation that lowering the substrate temperature decreases the rate of deuterium uptake, and the dependence of deuterium penetration on the substrate doping type indicate that hydrogen diffusion is of primary importance. The presence of a 50 nm thick oxide layer on the Si substrate during plasma exposure lowers the deuterium near-surface concentration in the Si substrate by about three orders of magnitude, while the presence of 10 nm of thermal oxide reduces the deuterium uptake only insignificantly. Heavily B and As doped polycrystalline Si show less deuterium penetration, while undoped polycrystalline Si shows more deuterium uptake than undoped single crystal Si for the same plasma treatment.

 

点击下载:  PDF (603KB)



返 回