首页   按字顺浏览 期刊浏览 卷期浏览 A biophysical model of cochlear processing: Intensity dependence of pure tone responses
A biophysical model of cochlear processing: Intensity dependence of pure tone responses

 

作者: Shihab A. Shamma,   Richard S. Chadwick,   W. John Wilbur,   Kathleen A. Morrish,   John Rinzel,  

 

期刊: The Journal of the Acoustical Society of America  (AIP Available online 1986)
卷期: Volume 80, issue 1  

页码: 133-145

 

ISSN:0001-4966

 

年代: 1986

 

DOI:10.1121/1.394173

 

出版商: Acoustical Society of America

 

数据来源: AIP

 

摘要:

A mathematical model of cochlear processing is developed to account for the nonlinear dependence of frequency selectivity on intensity in inner hair cell and auditory nerve fiber responses. The model describes the transformation from acoustic stimulus to intracellular hair cell potentials in the cochlea. It incorporates a linear formulation of basilar membrane mechanics and subtectorial fluid–cilia displacement coupling, and a simplified description of the inner hair cell nonlinear transduction process. The analysis at this stage is restricted to low‐frequency single tones. The computed responses to single tone inputs exhibit the experimentally observed nonlinear effects of increasing intensity such as the increase in the bandwidth of frequency selectivity and the downward shift of the best frequency. In the model, the first effect is primarily due to the saturating effect of the hair cell nonlinearity. The second results from the combined effects of both the nonlinearity and of the inner hair cell low‐pass transfer function. In contrast to these shifts along the frequency axis, the model does not exhibit intensity dependent shifts of the spatial location along the cochlea of the peak response for a given single tone. The observed shifts therefore do not contradict an intensity invariant tonotopic code.

 

点击下载:  PDF (1960KB)



返 回