首页   按字顺浏览 期刊浏览 卷期浏览 Structures and properties of zinc(II) complexes ofNN-bis[(2-hydroxy-5-X-phenyl)phenylme...
Structures and properties of zinc(II) complexes ofNN-bis[(2-hydroxy-5-X-phenyl)phenylmethylene]-4-azaheptane-1,7-diamine (X = chloro or methyl): comparison ofd10,d9, andd8analogues

 

作者: Derek P. Freyberg,  

 

期刊: Dalton Transactions  (RSC Available online 1976)
卷期: Volume 1, issue 5  

页码: 447-454

 

ISSN:1477-9226

 

年代: 1976

 

DOI:10.1039/DT9760000447

 

出版商: RSC

 

数据来源: RSC

 

摘要:

1976 447Structures and Properties of Zinc(ii) Complexes of NN-Bis[ (2- hydroxy-5-X-phenyl)phenylmethylene] -4-azaheptane-I ,7-diamine (X = Chloro orMethyl) : Comparison of dl0, d9, and d8 AnaloguesBy Derek P. Freyberg, Garry M. Mockler, and Ekk Sinn," Chemistry Department, University of VirginiaCharlottesville, Virginia 22901, U.S.A.The zinc( 11) complexes of the quinquedentate ligands derived from the Schiff-base condensation of 3.3'-iminobis-(propylamine) with 5-chloro-2-hydroxybenzophenone (cbp) and 2- hydroxy-5-methylbenzophenone (mbp) havebeen synthesized and their crystal structures determined. [Zn (cbp)] *H20 Is crystallographically isomorphous with[Cu(mbp)], and the co-ordination environment of the zinc is a distorted trigonal bipyramid. The water moleculeis disordered ; it is remote from the metal atom and appears to produce no significant distortion of the complex.Thestriking differences between the related nickel(ii), copper(1i). and zinc(l1) complexes must be ascribed mainly tothe dn configuration of the metals. The metal environment in related nickel(ii), copper(ii), and zinc(ii) com-plexes lies between trigonal bipyramidal and distorted square pyramidal, and progresses increasingly towardsbipyramidal through the series Cu, Ni, Zn.Crystals of the zinc(l1) complex with mbp were obtained as a hydrate [Zn(mbp)]*H,O with the water moleculeprobably hydrogen-bonded to a ligand atom, but with no apparent distortion due to the water molecule. The metalenvironment again approximates a trigonai bipyramid.The crystal structures were determined from full-matrix least-squares refinement of counter data ([Zn (cbp)] -H20 :space group P i , Z = 2, a = 10.099(1), b = 12.500(2), c = 13.261 (4) 8, a = 74.57(3), = 68.06(1), y =86.07(2)",R = 0.036.2 612reflections; [Zn(mbp)]-H,O: spacegroupP2,/c,Z = 4.a = 16.30(1),6 = 10.178(4),COMPLEXES of the quinquedentate ligand (1) (mbp, X =Me; cbp, X = C1) with a series of transition metals havex / ooH HoQbeen reported, and the crystal structures of [Ni(mbp)]and [Cu(mbp)] have been determined.l The copper(I1)and nickel(lr1) complexes show significant differences inthe metal environments, presumably due mainly tocrystal-field effects.The nickel is closer to squarepyramidal than trigonal bipyramidal and it is alsosufficiently different from square planar to make it highspin.The copper environment is somewhat closer againto square pyramidal than for nickel, having one elongatedmetal-ligand bond. We report here the structure of tworelated five-co-ordinated zinc(r1) complexes to completethe comparison of ds, d9, and d10 complexes with ligand(1). It was noted that [Zn(cbp)] is isomorphous with[Cu(mbp)], but that [Zn(mbp)] is not isomorphous withany of the related complexes. Thus, in at least onecase, the ideal situation exists for the comparison; thetwo types of molecules are packed in essentially the sameunit cells, and any differences in molecular structuremust be due to the dn configuration alone.EXPERIMEKTALThe Complexes were prepared as previously described,[Zn(cbp)] (Found: C, 62.1; H, 4.9; X, 6.4.ZnCI,O,N,-= 0.048, 2 669 reflections).C32H29 requires C, 61.6; H, 4.7; N, 6.7%) and [Zn(mbp)]*iH,O (Found: C, 68.6; H, 6.1; X, 6.7. Zn0,.,N3C34H,,requires C, 69.0; H, 6.1; N, 7.1%) were recrystallised frommethanol to give crystals suitable for X-ray crystallographicstudies. Densities were determined by flotation (aqueouspotassium iodide), and mass spectra obtained on a HitachiPerkin-Elmer RMU 6E mass spectrometer.Crystal Data for [Zn(cbp)]*H,O.-M = 621, Triclinic, n =10.099(1), b = 12.500(2), c = 13.261(4) A, a = 74.67(3),(3 = G8.06(1), y = 86.07(2)", U = 1 495A3, D, = 1.42, 2 =2, D, = 1.41. Space group Pi. Mo-K, radiation, A =0.710 7 A; p(Mo-K,) = 10.5 cm-l.Crystal Data for [Zn(mbp)]*H20--llJ = 5!1, Monoclinic,a = y = go", U = 2 979 A3, D, = 1.30, Z = 4, D, = 1.33.Space groupP2Jc.p(Mo-K,) = 8.8 cm-l. Slow loss of water,which accounts for the difference in hydration betweenmicroanalytical and crystallographic samples, is discussedlater.Small irregularly-shaped crystals of [Zn(cbp)]-H,O and[Zn(mbp)]*H,O were selected for the crystallographic study.Preliminary cell dimensions were obtained by use of theEnraf-Nonius program SEARCH to locate 15 independentreflections. Refined cell dimensions and their estimatedstandard deviations were calculated from a least-squaresrefinement of the preliminary us. observed values of &O for28 strong general reflections for [Zn(cbp)]*H,O, and for 23for [Zn(mbp)]*H,O, each centred on the diffractometer forthe Rfo-K,, and Mo-Koc2 wavelengths.Diffraction data were collected from small crystalsmounted on glass fibres with epoxy resin.The mosaicity ofeach crystal was examined by the o scan technique andjudged satisfactory. Diffraction data were collected on anEnraf-Nonius four-circle CAD 4 diffractometer controlled bya PDPS/E computer, by use of graphite-monochromated310-K, radiation. The 8-28 scan technique was used t orecord the intensities of all reflections for which 0" < 28 <a = 16.30(1), b = 10.178(4), c = 18.996(9) A, p = 71.79(9),P. C. Healy, G. 11. Mockler, I>. P. Freyberg, and E. Sinn,.J.C.S. Dalton, 1975, 691, and refs. therein448 J.C.S. Dalton25". The symmetric scans were centred on the calculatedpeak positions. Scan widths (SW) were based on 0 by useof the formula SW = A + BtanO, where A is estimatedfrom the mosaicity and BtanO allows for the increase inwidth of the peak due to separation of Mo-Kal and Mo-KaI:A = 0.6, B = 0.2" were used for [Zn(cbp)]*H,O, and A =c11-CI 12'C 922 612 were considered observed [having 1 > 3 4 4 1 , and ofthe 3 522 independent intensities for [Zn(mbp)]-H,O, 2 669were considered observed [having I > 20(1)].For each crystal, the intensities of four standard reflec-tions, monitored a t 100 reflection intervals, showed nosignificant fluctuations.Raw intensity data were correctedCI 1'CC 9210FIGURE 1 Molecular geometry of [Zn(cbp)].H,OCIU c12'CIO' CIYFIGURE 2 Molecular geometry of [Zn(mpb)].H,O1.5, B = 0.4' for [Zn(mbp)]*H,O.For each reflection, the for Lorentz and polarization effects, but not for absorptioncalculated scan angle was extended by 25% a t either side to because of the small sizes of the crystals.estimate the background count. Reflection data were Solution and Refinement of the Structures.-Full-matrixconsidered significant if intensities registered 10 counts least-squares refinement was based on F, and the functionabove background during the prescan, insignificant reflec- was minimized as &I( lFol - IFC1),. Atomic scatteringtions being rejected automatically by the computer. Of factors for non-hydrogen atoms were taken from ref. 2 and4 173 independent intensities recorded for [Zn(cbp)]-H,O 2 D.T. Cromer and J. T. Waber, Acta Cryst., 1965,18, 611976 449for hydrogen from ref. 3, the effects of anomalous dispersionwere included in taking values for Af' and Af" from ref. 4.Computations were performed on a PDP 11/45 computerwith 32K of core memory, magnetic tape and magnetic discstorage being used in calculations with larger memoryrequirements, such as full-matrix least-squares refinementsand Fourier mapping. The programmes used were local oradapted from those specifically written for Enraf-NoniusStructure of [Zn(cbp)]*H,O.-All non-hydrogen atomswere inserted at calculated positions of the isomorphous com-plex [Cu(mbp)]. This gave R 0.48, and six cycles of full-matrix least-squares refinement of this model producedR 0.083.The disordered water molecule was located in aFourier difference map. Anisotropic temperature factorswere introduced, and hydrogen atoms were inserted geo-metrically as fixed atoms, assuming C-H 0.95 A, withFIGURE 3 Packing diagram for [Zn(cbp)].H,OFIGURE 4 Packing diagram for [Zn(mpb)].H,Odiffraction systems by 1'. Okaya, B. Frenz, K. 0. Hodgson,E. Sinn, and others; others were from ' X-Ray '72 ' (ed.J. M. Stewart), ORTEP (C. K. Johnson), and the Universityof Canterbury crystallographic programme^.^ The validityof calculated outputs from our programme system wasthoroughly checked and compared with the results ofpreviously tested systems such as ' X-Ray '72 ' and theUniversity of Canterbury programmes.3 R. F. Stewart, E. R.Davidson, and W. T. Simpson, J . Chem.Phys., 1966,42, 3175.D. T. Cromer, Acta Cryst., 1965, 18, 17.isotropic temperature factors of 5.0. After convergence,they were inserted at their new calculated positions. Afterfurther refinement, the model converged with R 0.036 andR' 0.048 [R' = Cw(lFol - IFc1)2/ZwlF,12]. The error in anobservation of unit weight was 1.113.Structure of [Zn(mbp)]*H,O.-A standard Patterson mapcalculated from all data enabled location of the zinc atomin a general position (R 0.483). All the remaining non-6 R. M. Countryman, W. T. Robinson, and E. Sinn, Inorg.Chem., 1974, 13, 2013; W. T. Robinson and E. Sinn, J.C.S.Dalton, 1975, 726450hydrogen atoms were unambiguously located from sub-sequent three-dimensional Fourier syntheses, and full-TABLE 1Positional parameters* and their estimated standarddeviations(a) [Zn(mbp)].H,OX0.25730 (7)0.3 209 (3)0.2005(3)0.2094 (5)0.377 1 (4)0.1421(4)0.2 3 6 3 (4)0.4693 (5)0.4042( 5)0.42 90 (5)0.5 157 (6)0.58 20 (6)0.5569 (5)0.4535( 5)0.5284 ( 5)0.567 7 (6)0.6362( 6)0.6637(6)0.62 63 ( 6)0.5582(5)0.6761(5)0.361 3 (5)0.3 39 5 (7)0.3072(8)0.0632(5)0.1 2 69 (5)0.1084(5)0.032 7 (5)-0.0281(6)-0.01 lO(5)- 0.0055(5)-0.0680(5)-0.1410(5)0.07 25 (5)- 0.1519(5)- 0.0894(6)- 0.0170(5)-0.1060(5)0.1483 (5)0.1466(6)0.2231 (7)0.3 8 6 3 (0)0.5 2 90 (0)0.5998 (0)0.5484(0)0.6609(0)0.7 13 7 (0)0.6458(0)0.5308(0)0.3 135 (0)0.4110(0)0.292 5 (0)0.388 7 (0)0.3 002 (0)0.363 1 (0)0.1 47 2 (0)0.0208 (0)0.4483(7)0.4599(7)0.03 73 (7)- 0.1 49 7 (8)-0.3444(8)-0.4666(8)-0.4078(10)- 0.2159(9)-0.2115(8)- 0.2698(8)- 0.2874(9)-0.2827(9)- 0.1389 (9)Y0.89 14( 1)0.73 75 (6)0.9025( 6)0.5115(8)0.9755(7)0.8147( 7)1.0645( 8)0.7944 ( 8)0.7 07 8 (9)0.5804(9)0.53 8 7 (9)0.62 16 (9)0.7 475 (9)0.9 2 72 ( 9)1.0209(11)1.1071 (14)1.1872( 13)1.1875( 11)0.5742( 10)1.2063( 11)1.1571 (11)0.7 900 ( 8)0.48 7 6 ( 8)0.8466(9)0.7 8 99 ( 9)0.7 25 1 (9)0.7 3 35 (9)0.7827 (8)0.7374( 9)0.827 7 (8)0.7 867 ( 10)0.6570( 9)0.565 1 (9)0.6079( 9)0.653 1 ( 10)0.8064( 10)0.491 2 ( 1 1)1.0287(10)0.5 1 94 (0)0.4493 (0)0.9665 (0)1.2 3 85 (0)1.248 1 (0)1.101 6(0)1.1141 (0)1.1454( 0)1.2644(0)0.2650 (0)1.23 55 (0)0.8843(0)0.7 9 66 (0)0.1804( 7)0.1624(7)0.1909(6)0.01 55 (6)0.0865(7)0.27 2 7 (7)0.3321( 7)0.3207( 7)0.2435( 7)0.1028 ( 10)0.0592 (7)1.019 1 (9)1.1022 ( 10)1.1 101 (10)0.808 1 (0)1 .1 09 9 (0)1.11 8 l(0)- 0.0416(6)0.1900(10)- 0.0524(9) 0.0740(7)z0.4443 1 (6)0.4608(3)0.3 682 ( 3)0.4 809 (4)0.3 8 24 (4)0.5 186( 3)0.5 1 60 (4)0.3 8 9 2 (4)0.4308(5)0.4395 (5)0.4089(5)0.369 7 (5)0.36 1 5 (5)0.37 1 O( 4)0.3363 (5)0.2597 (5)0.2295(6)0.2 7 35 (7)0.3488( 7)0.3 7 9 2 (5)0.33 7 7 (5)0.3 599 ( 5)0.4226 (7)0.49 68 (6)0.4297 (4)0.3 6 7 6 (4)0.299 6 (4)0.2947 ( 4)0.35 2 8 (4)0.4 188 (4)0.5 0 3 7 (4)0.56 5 7 (4)0.60 1 3 (4)0.65 8 7 (5)0.67 8 7 (5)0.6438(5)0.5 8 74 (4)0.341 5 (5)0.5945(4)0.62 8 7 (5)0.5918( 7)0.4 6 66 (0)0.4 1 66 (0)0.3 3 60 (0)0.227 5 (0)0.1770(0)0.2450(0)0.378 1 (0)0.43 1 6 (0)0.3 3 80 (0)0.3206 (0)0.41 86 (0)0.4 1 55 (0)0.52 95 (0)0.503 2 (0)0.266 1 ( 0)0.2480 (0)0.3 303 ( 6)0.5039( 7)0.6431(5)0.5945(6)0.7658 ( 6)0.85 62 ( 6)0.7763(7)0.6057 (7)0.3282 (6)0.4496( 6)0.2884 ( 9)0.3944(9)0.232 1 (7)0 3028(7)70.09491 (9)0.3226 (3)0.2626 (2)0.0325( 5)0.23 39 (4)0.1131( 11)0.9793 (1 3)0.245 9 (5)- 0.0610(5)- 0.0065(6)0.2 159 ( 6)0.0992(7)0.0563(7)0.1 2 1 6 ( 8)0.2357(7)0.2787(7)0.2 7 58 (6)0.3 7 94 (6)0.52 19 (7)0.6 149 (7)0.5654(8)0.4226 (8)0.3295( 7)0.3 157 (8)0.0967 (8)0.1 05 7 (6)0.2305(6)0.3601 (7)0.3704(7)0.2483( 7)0.1201 (7)0.2119(9)- 0.0400( 6)- 0.1641 (6)-0.2020(7)- 0.31 74( 7)- 0.3900( 7)- 0.3544(9)-0.2412(8)-0.2022(7)- 0.2294(8)-0.1041(8)- 0.0240(8)0.0892(8)0.3551 (7)0.557 8 (8)0.7141 (8)0.6291 (9)0.3870(8)0.230 7 (8)0.35 1 9 (8)0.392 2 (8)0.266 1 ( 10)0.1669(10)0.1403( 9)0.0453(9)-0.0536(0)- 0.06 1 6 (0)- 0.1 838 (0)- 0.205 1 (0)- 0.09 73 (0)0.02 5 6 (0)0.2003(0)0.1004( 0)0.1479(0)0.0966(0)0.2 7 6 3 (0)0.2 206 ( 0)J.C.S.Dalton1 (Continued)Y0.30231(7)0.88 39 (2)0.1681(2)0.4549(4)0.2256 (4)0.5076(8)0.5 1 1 3 ( 16)0.3 5 9 7 (4)0.2496(4)0.193 8 (5)0.5558(5)0.5470(5)0.6470 (6)0.7488(6)0.7566 (5)0.66 1 8 ( 6)0.4592( 5 )0.48 3 2 (5)0.5024(6)0.52 1 1 (6)0.52 16 ( 7)0.5028( 7)0.48 30 ( 6)0.2 653 ( 6)0.1961 (6)0.1288(7)0.2053 (5)0.2093 (5)0.1869(6)0.1744(7)0.1795(6)0.1 9 1 6 ( 6)0.2 1 60( 5)0.1 790 (5)0.0690( 6)0.0349( 6)0.1 104 ( 6)0.2 200 ( 6)0.2653(6)0.25 13( 6)0.1598( 8)0.11 09( 7)0.6443(6)0.81 33 (6)0.6 682 ( 7)0.5031 (7)0.5337(7)0.5347(7)0.5034( 7)0.4692( 7)0.2 199 (6)0.2 930 (6)0.1460(7)0.2450( 7)0.0814(7)0.0852( 7)0.6975 (0)0.9 17 7 (0)0.8463 (0)0.6274(0)0.4746(0)0.542 7 ( 0)0.7 643 (0)0.7 594 ( 0)0.9329 (0)0.98 73 (0)0.985 2 (0)1.1097 (0)Z0.2 1 397 (6)0.7 1 78 (2)0.20 3 1 (3)0.2731 (3)0.5758(8)0.4649( 12)0.048 2 (4)0.3 7 84 (4)0.1 595 (4)0.02 80 (5)0.1 3 58 (5)0.1634(5)0.1 003 (5)- 0.08 1 0 (2)-0.0005(5)-0.0348(5)- 0.01 37 (5)- 0.135 7 (5)- 0.1646( 5)- 0.2761 (6)- 0.3587 ( 5 )-0.3300(5)-0.2193(5)-0.0123(6)0.0051 (6)0.09 05 (6)0.4 7 32 (5)0.3 746 ( 5 )0.3922 (5)0.4959 (6)0.5878 (5)0.578 1 (5)0.4707 (5)0.5831 (5)0.63 10 (5)0.73 83 (6)0.7856(6)0.7303 (6)0.6378( 6)0.3 7 50 ( 6)0.33 16( 7)0.2582(7)0.2 30 7 ( 6)0.1 256 (6)- 0.1 050 ( 6)- 0.1081 (5)- 0.2950 (7)- 0.4349 ( 6)-0.3869(6)-0.2006(6)-0.0647(6)- 0.0531 (6)-0.0563(6)0.057 7 (6)0.1368(7)0.06 76 ( 7)0.4605 (0)0.58 7 5 (0)0.6851(0)0.7 1 85 (0)0.6580(0)0.5 640 (0)0.5932(0)0.6 25 6 (0)0.6 7 SO( 0)0.6 2 80 (0)0.5878(0)0.6 154( 0)* The form of the anisotropic thermal parameter is: exp -[(b(l.l)*h*h + b(2.2)*K*k + b(3.3)*Z*Z -{- b(l.2)*h*k +b(1.3)*12*2 + b(2.3)*k*Z)].matrix least-squares refinement gave R 0.098.Withanisotropic temperature factors and hydrogen atomscalculated as before, the model converged with R 0.041976 451(R’ 0.048). The error in an observation of unit weight was1.655. Structure factor calculations with all observed andunobserved reflections included (no refinement) gave R0.063 for [Zn(cbp)]*H,O and R 0.081 for [Zn(mbp)]*H,O;1 77.9 (2)90.4(2)reflections rejected automatically during data collection o(l)-zn-N(2) 18. 1(2) O(l’)-zn-N(2) 1 1 1.5( 2)would not significantly improve the result.Final observed 0( l’)-Zn-N(l) 94.1(2) O(1’)-Zn-N(1’) 8 7.8 (2)TABLE 3Bond angles (”)(a) [Zn(cbP)l* H 2 0this basis it was decided that careful measurement of O(l)-zn-O(l’) 130*4(2) N(l)-Zn-N(l’) O(1)-Zn-N(l) 87.8(2) O(1)--Zn-N(l’)( a ) Pn(cbp)lZn-0 (1)Zn-N( 1)Zn-N ( 2)Cl-C( 5)N( 1)-C( 7)N( 1)-C( 14)N(2)-C(16)C( 1 )-CMC(lFC(6)C( 1)-C(7)W-C(3)C( 3)-c (4)C(4)-C(5)C(5)-C(6) c (71-C (8) c (8)-C(9)C( 9)-c ( 10)C( 10)-C( 11)C(l1)-C(12)W)-C(2)C( 8)-C( 13)C( 1 2)-C( 13)C(14)-C(15)C( 15)-C( 16)TABLE 2Bond distances (A)1.964( 5)2.1 13 (5)2.16016)1.7 35 (8)1.295 (8)1.279(8)1.478( 8)1.474( 10)1.456 (9)1.405(9)1.468(9)1.397 (9)1.372(10)1.3861 9)1.373( 9)1.523 (8)1.3 65 (9)1.382 (9)1.389 (9)1.365(11)1.367( 11)1.381(10)1.517(11)1.498( 11)(b) [Zn(mbp)lZn-O( 1) 1.957 (5)Zn-N( 1) 2.119(6)Zn-N(2) 2.187(8)O( 1)-C( 2) 1.333(8)N( 1)-C(7) 1.294(10)N( 1)-C( 16) 1.481 (1 2)N( 2)-C( 17) 1.45 (2)1.42(1)C(WC(3) 1.38(1)1.42( 1)1.37(1) :[:;I:\!!€) 1.54(1)C(7)-W3) 1.52(1) c (8)-C (9) 1.39(1)C( 8)-C( 13) 1.37 (1)C(9)-C(lO) 1.40(2)C( 10)-C( 11) 1.34(2)C ( 1 1)-C( 12) 1.37(2)C ( 12)-C( 13) 1.39( 1)C( 15)-C( 16) 1.50( 2)C( 1 6)-C( 17) 1.43 (2)Zn-O( 1’)Zn-N( 1 ‘)CY-C(5‘)N(1 )-C(14)C(l’)-C(2‘)0 ( 1 ?-C (2;)N(l,)-C(7 1’N(2’)-C(16‘)C( l‘)-C(6’)C( l’)-C(7’)C (2’)-C( 3’)C( 3’)-C(4’) c (4’)-C (5’)c (8’)-C ( 9’)c ( 9’)-C( 10’)C( 1 0’)-C( 1 1 ‘)C( 1 1 ’)-c ( 12’)C( 5’)-C( 6’)C( 7’)-C( 8’)C(S’)-C( 13’)C( 12’)-C( 13’)C( 14‘)-C( 15’)C( 15’)-C( 16’)Zn-0 ( 1 ‘)Zn-N(1’)O( l’)-C(2’)N( l’)-C(7’)N( 1 ’)-C( 15’)N(2’)-C(17’)C(1’)-C(6’)C(l’)-C(7’)C ( 27-C (3’)C(l’)-C(2’)c ( 3’)-c (4’)C( 4’)-C( 5’)C( 5’)-C( 6’)C(5’)-C( 14’)C(7’)-C(S’)C(S:)-C(9’)C(8 )-C(l3’)C(9’)-C(lO’)C( 10’)-C( 11’)C( 1 1’)-C( 12’)C(12’)-C(13’)C( 15’)-C(16’)C( 16’)-C ( 17’)1.947(5)2.1 14 (5)1.754( 7)1.297 (7)1.279(8)1.445( 9)1.48 3 ( 1 0)1.43 1 (8)1.41 9 (9)1.485 (9)1.4 18( 9)1.386( 10)1.387 ( 10)1.348 ( 9)1.522(8)1.365( 9)1.380( 9)1.3 98 ( 9)1.342(10)1.356( 10)1.382 (9)1.49 3 ( 1 2)1.495( 12)1.949( 5)2.1 14( 6)1.327( 10)1.295( 9)1.47 9 ( 1 0)1.43 ( 2)1.43(1)1.41 (1)1.46(1)1.41(1)1.39( 1)1.40( 1)1.37(1)1.54( 1)1.51 (1)1.38(1)1.38( 1)1.40(1)1.37(1)1.39( 1)1.39( 1)1.52 ( 1)1.51( 1)and calculated structure factors and thermal parametersare listed in Supplementary Publication No.SUP 21579(32 pp., 1 microfiche). *RESULTS AND DISCUSSIONThe molecular geometries and numbering systems of[Zn(cbp)]*H,O and [Zn(mbp)]*H,O are shown in Figures1 and 2 respectivelj-. Owing to positional disorder, the* See Notice to -1utlm-s No. 7, in J.C.S. Dalton, 1975, Indexissue.N( 1)-Zn-N( 2)Zn-O (1)-C( 2)Zn-N( 1)-C( 7)Zn-N(1)-C(14)C (7)-N( 1)-C( 14)Zn-N( 2)-C( 16)C( 16)-N (2)-C( 16’)C(2)-C( 1)-C(6)C(2)-C( 1)-c(7)C(6)-C(l)-C(7)O( l)-C(2)-C( 1)0 (l)-c(2)-C(3)C( 1)-C( 2)-C( 3) c (2)-C( 3)-c (4) y-(3W~j5)Cl-C( 5)-C(6)C(4)-C(5)-C(6)C( 1 )-C (6)-C (5)N( 1)-C( 7)-C( 1)N (l)-c(7)-C(8)C( 1)-C( 7)-C( 8)C( 7)-C(8)-C(9) c ( 7)-c (8)-C( 1 3)C(9)-C(S)-C(l3)C( 8)-c (9)-c ( 10) c ( 9)-c ( 1 0)-C( 1 1)c(10)-c(11)-c(12)C(ll)-C(l2)-C(13)C( 8)-C( 13)-C( 12)N( 1)-C( 14)-C( 15)C ( 14)-C ( 15)-C( 16)N( 2)-C( 16)-C( 15)(4 [Zn(mbp)l0 ( 1 )-Zn-0 ( 1 ’)0 (1)-Zn-N( 1)O(1)-Zn-N(2)O(1’)-Zn-N(l)N (1)-Zn-N( 2)Zn-O(1)-C(2)Zn-N( l)-C( 7)Zn-N( I)<( 15)C(7)-N( 1)-C(15)Zn-N( 2)-C( 17)C( 1 7)-N( 2)-C( 17’)C( 2)-C ( 1 )-C( 6)C( 6)-C ( 1)-C( 7)0( 1)-C( 2)-C(3)C( 2)-C( 1)-C( 7)O( l)-C(2)-C( 1)C( 1)-C( 2)-C( 3)c (2)-C (3)-c (4)C(3)-C(4)-C(5)c (4)-c (5)-C( 14)C (4)-C (5)-C (6)C( 6)-C(5)-C( 14)C( 1)-C( 6)-C(5)N ( 1)-C( 7)-C ( 1)N(l)-C(7)-C(8)C(l)-C(7)-C(8) c (7)-C( 8)-C( 9)C( 7)-C( 8)-C( 13)C( 9)-C( 10)-C( 1 1)C( 10)-C( 1 1)-C( 12)C(ll)-C(12)-C(l3)C( 8)-C( 13)-c ( 1 2)C (9)-C (8)-C( 13)C( 8)-C( 9)-C (1 0)N ( 1) -C ( 1 5)-C ( 1 6)C( 1 5)-C( 16)-C ( 17)N( 2)-C( 17)-C( 16)90.4(2j129.5 (5)128.6(5)110.4(4)121.0(6)1 12.5 (5)105.5( 7)11 7.5( 7)1 23.2 (6)119.2(6)124.4( 7)119.7(7)115.9(7)124.7( 7)119.3(7)120.4( 6)120.9( 611 18.7( 7)123.8(7)122.7( 6)120.8(7)116.5(6)12 1.5( 6)1 19.7 (6)1 18.8( 6)1 20.5 (7)1 20.7 (8)1 18.9( 8)120.8 (8)120.3( 7)1 1 1.4( 6)117.6(7)1 15.0( 7)1 24.3 ( 2)88.3(3)122.2 (3)97.7 (2)8 7.6 (3)129.3 (7)127.7 (8)108.7 (6)1 23.3 (9)114.3(7)106.0(11)1 18.8( 10)124.1( 11)11 7.1 (1 1)125.7( 11)117.3( 11)117.1(10)12 1.5 (10)123.3 (10)114.7 (1 1)122.3( 11)1 23.1 ( 1 0)124.6 (1 0)1 2 3.5 (1 0)116.2( 11)1 20.3 ( 10)120.4(13)120.7( 11)118.9(11)1 18.9 (13)120.5(18)121.8( 19)1 1 8.1 ( 1 6)121.9( 12)11 3.3 (10)118.5(12)1 19.6( 14)N( l’)-Z?-N( 2)Zn-O( 1 )-C( 2’)Zn-N( 1’)<(7’)Zn-N ( 1 ’)-C( 14’)C( 7‘)-N( 1 ’)-C( 143Zn-N(2)-C( 16’)C (2’)-C( l’)-C (6’)C(2’1-C( 1’)-C(7’)C(6’)-C( l’)-C(7’)0 ( l’)-C (2’)-C( 3’)O(l‘)-C(2’)-C( 1’)C( l/)-C(27-c(3’)C( 2’)-C( 3’)-C( 4’)C( 3’)-C(4’)-C(5’)Cl’-C( 5’)-C( 4’)Cl’-C( 5’)-C( 6’)C( 4’)-C( 5’)-C( 6’)C( 1’)-C( 6’)-C( 5’)N( 1’)-C( 7’)-C( 1’)N ( 1 ’)-C (7’)-C (8’)C( 1’)<(7’)-C(8’)C ( 7‘)-C ( 8’)-C( 1 3’)C( 7’)-C (8’)-c (9’)c (9’)-C( S’)-C ( 1 3’)C( 8’)-C( 9’)-C( 1 0‘)c(9’)-c(lo’)-c(ll’)c(lo’)-c(ll’)-c(l2’)C( 11‘)-C( 12’j-C( 13’)C(S’)-C(13’)-C(12’)N( l’)-C( 14’)-C( 15’)C( 14’)-C( 15’)-C( 16’)N( 2)-C (1 6’)-C( 15’)N(1)-Zn-N(1’)O( 1)-Zn-N( 1’)O(1’)-Zn-N(2)O(1’)-Zn-N( 1’)N( 1’)-Zn-N(2)Zn-0 ( 1 ’)-C(2’)Zn-N( l’)-C( 7’)Zn-N( 1’)-C( 15’)C(7’)-N( 1’)-C( 15’)Zn-N(2)-C(17’)C(2’)-C( l’)-C(6’)C( 6’)-C ( 1 ’)-C (7’)C(2’)-C(l’)-C(7’)O( l’)-C(2’)-C(l’)0 ( 1 ’)-C( 2’)-C( 1 ’)C(lf)-C(2’)-C(3’)C(2’)-C( 3’)-C(4’)C(3‘)-C(4’)-C(5’)C (4’)-C (5‘)-C( 6’)C( 4‘)-C (5’)-C( 14’)C(S’)-C(5’)-C( 14’)C(lr)-C(6’)-C(5’)N (1 ’)-C( 7’)-C ( 1’)N ( 1 ’)< ( 7 ’)-C (8’)C( 1’)-C( 7’)-C( 8’)C( 7‘)-C( 8’)-C( 9’) c (7?-C (8’)-C( 13;)C(9 )-C(8’)-C(13 )C (87-C (9’)-C ( 10’)C( 9’)-C( 10’)-C( 1 1 ’)C(l0’)-C( 11’)-C(l2’)C( 8’)-C( 13’)-C( 12‘)C(ll‘)-C(12’)-C(l3’)N( 1’)-C( 15’)-C( 16’)C( 15’)-C( 16’)-C( 17’)N(2)-C(17’)-C(16’)89.6 (2)126.7(4)12 7.3 (5)1 1 0.6 (5)1 22.0( 6)1 1 0.2 (5)11 9.3 (6)1 2 2.7 (6)1 1 8 .O( 6)26.0 (6)117.9(6)116.0(6)122.7 (7)119.2(7)1 19.0( 6)120.3 (6)120.7 (7)12 1.7 (6)12 2.0 (6)121.2( 6)116.8(6)120.1(6)1 2 1 .O( 6)1 18.8( 6)120.3( 7)120.0( 7)120.7 (7)120.1(7)120.1 (7)112.1 (7)118.3(8)1 13.9( 8)172.5( 3)113.4(3)89.3 (2)87.0( 3)1 28.6 ( 6)127.1 (7)110.8(6)1 22.1 ( 8)1 1 1.5( 8)1 1 8.6 (9)1 23.2 (9)1 18.2( 10)1 26.1 ( 1 0)117.6(10)1 16.3( 9)120.8(9)124.5(10)1 13.3( 10)90.1 ( 2)121.8( 11)124.9(10)126.2(9)124.0(10)119.3(9)116.7(8)119.4(10)118.7(9)120.5(10)120.3( 10)1 1 8.4( 1 0)122.2 (9)1 11.7 (9)115.6(10)11 7.3( 11)1.3 1.9( 10)119.9(9452 J.C.S.Daltonwater molecule in [Zn(cbp)]*H,O is not shown. Table 1gives final positional parameters, and Tables 2 and 3 bondlengths and angles. Estimated standard deviations (inparentheses) are derived from the inverse matrix in thecourse of normal least-squares refinement calculations.As is evident from the packing diagram (Figures 3 and 4),and from the nearest intermolecular contact distances(Table 4) , the crystal structures consist of well-separatedneutral complex molecules.TABLE 4PTesrest intermolecular contact distances (-8.)(4 CZn(cbp)l.H,OZn * * * O(2A) 4.054(11)O(1! * - * O(2A) 2.901(12)N ( l ) - O(2A) 3.234(13)c1 * * * C(l1‘) 3.7 52 ( 9)C1’ .. . C(15) 3.535 ( 8)0(1! . * C(13) 3.640\9)0(1 ) * * - C(10) 3.617(9)O(1’) - * - C(9’) 3.561(9)O(1’) * * C(l0’) 3.338(9)N(2) * * C(5) 3.610(9)C(l) * * * C(9)C(10) * - * C(2’)C1 - - * C(l6’) 3.773( 9)3.680(10)3.506(10)(b) [Zn(mbp)].H,OZn - * - O(2)O(1) - * - O(2)N(l ) - * - O(2)O(1) * * C(10) 3.71(2)O(1’) * - C(11) 3.64(2)C(l) - * * C(10) 3.76(2)C(2) * * * C(10) 3.47(2)C(3) * - * C(4) 3.494(14)3.964 ( 1 2)2.883(13)3.279(14)O(1) * * - O(2R)N ( l ) * * O(2B)C(10) - * - C(3’)C(10) * * * C(12’)C(11) * * C(3’)C(11) * * * C(4’)C(2‘) * - * C(9’)C(2’) * * * C(l0’)C(3’) - * * C(l0’)C(11) - * * C(13’)C(12) * * - C(14’)C(5’) - C(16’)C(3) * * * C(10)C(4) * - - C(4)C(14) - - * C(l?‘)C(5 ) * * - C(13’)C(6‘) * * * C(12’)C(6’) * * * C(13’)C(l0‘) * * * C(14’)c(5;) * * * C(12 )3.57(3)3.84( 3)3.5 56 ( 1 1)3.724(12)3.647 ( 1 3)3.736 (1 2)3.7 7 1 (1 2)3.750( 1 1)3.637( 10)3.71 7( 12)3.717( 12)3.738 (1 2)3.69( 2)3.43 (2)3.665( 13)3.53(2)3.72(2)3.48 (2)3.50 ( 2)3.743 ( 14)The X-ray data unambiguously indicate the presenceof one water molecule per zinc atom in [Zn(mbp)]*H,Oand [Zn(cbp)]*H,O, though microanalytical data suggesta hemihydrate for [Zn(mbp)] and an anhydrous complexfor [Zn(cbp)].This is attributed to slow efflorescence ofthe powdered samples used for microanalysis while inthe single crystals water loss is insignificant, at leastduring the time required for data collection. The posi-tion of the water molecules suggest that weak hydrogenbonding to the ligand is preferred over co-ordination withthe metal atom.In [Zn(mbp)]=H,O the oxygen of thewater molecule is near to one ligand oxygen atom (2.88A), and one nitrogen (3.28 A), suggesting hydrogen bond-ing to the oxygen, and possibly also to the nitrogen.The nearest approach of the oxygen of the water moleculeto a zinc atom is 3.96(1) A. In [Zn(cbp)]-H,O, the watermolecule is disordered between two sites A and B for theoxygen atom. Of these, A is similar to the water in[Zn(mbp)]*H,O: 2.90 from the nearest ligand oxygen,3.23 from the nearest ligand nitrogen, and 4.05 A fromthe nearest zinc.Site B is 3.56 A from the nearest ligandoxygen. The mass spectra of [Zn(mbp)]-H,O and[Zn(cbp)]*H,O exhibit the anhydrous molecular ions andcharacteristic fragmentation patterns,l and, as expectedfrom the rather weak mode of binding of the watermolecules, no molecular ion of the hydrated species[Zn (mbp)] *H,O is observed.Figures 5 and 6 illustrate the co-ordination about thezinc atom in the two complexes, and give bond distancesand angles. Analogous views of the co-ordination aboutcopper in [Cu(mbp)] and the nickel in [Ni(mbp)] areN( 1’) I f/=( cv“1)FIGURE 5 Co-ordination about Zn in [Zn(cbp)]*H,O064 .iNO)FIGURE 6 Co-ordination about Zn in [Zn(mpb)]*H,Ogiven in Figures 7 and 8.The crystallographic two-fold symmetry axis in [Ni(mbp)] (space group Pncb)requires statistical disorder in the -[CH,],-NH-[CH,],-chain with equal distribution on either side of the two-fold axis1 Thus, only one of the two symmetry-equivalent positions of the disordered nitrogen atom isused in Figure 8 since, in any given [Ni(mbp)] molecule,only one of the nitrogen positions (and not the mean ofthe two) must be occupied. It is clear from the distancesand angles in Figures 6-8 that the metal environmentsin the zinc complexes may be described as distortedtrigonal bipyramidal, while the copper and nickel com-plexes show both square pyramidal and trigonal bi-pyramidal geometries. A more detailed comparison o1976 453the peripheral parts of the zinc complexes is given inTable 5, in the form of least-squares planes, and inter-planar angles and atom-to-plane distances. Analogousinterplanar angles in [Cu(mbp)] and [Ni(mbp)] are givenfor comparison.The one elongated Cu-N bond gives the [Cu(mbp)]complex some features of a distorted square pyramidalor even a distorted planar configuration. The elon-gation cannot be dismissed as a steric requirement of theligand, since it does not occur in the nickel analogue.This striking difference between these two compoundssuggests that the regular five-co-ordinated environment“1’) 1“1)FIGURE 7 Co-ordination about Cu in [Cu(mbp)]1.96 0-N(1)FIGUKE 8 Co-ordination about Ni in [X(mpb)jis less favoured for such ligands in d9 complexes than indS.Otherwise the differences between the moleculargeometries of the two complexes is minimal. Theshorter mean metal-to-ligand bond distance in [Ni(mbp)]implies a greater ligand-field strength in the ds than in thed9 complex. The marked differences between the metalTABLE 5Equations of least-squares planes in the form A X +BY + CZ = D ; distances (A x lo4) of relevantatoms from the planes are given in square brackets;data for [Zn(cbp)] are given before those for [Zn(mbp)]A B C D-0.8952 -0.1682 -0.4128 -3.7444-0.3855 -0.3786 -0.8415 - 12.8422Plane (I): Zn, 0(1), N(I), C(1), C(2), C(7)[Zn -926, 259; 0(1) 1420, -690; N(l) 152, 308; C(l)-7757, 302; C(2) -602,462; C(4) 713, -6411Plane (11): Zn, O(l’), N(l’), C(l’), C(2’), C(7’)-0.2200 -0.9754 -0.0162 -4.70890.3154 -0.9109 - 0.2662 - 8.3147[ZII 1773, 737; O(1’) 2012, -986; N(1’) 968, -251; C(1’)-1 434, 586; C(2’) -364, 338; C(7’) 592, -4241Plane (111): Zn, 0(1), O(l’), N(2)0.3988 0.0413 -0.9161 - 1.26450.6771 0.3993 -0.6181 3.2702[Zn 189, 299; 0(1) -68, -109; O(1’) -65, -101; N(2)-51, -881Plane (IV) : Zn, N(I), N(l’), N(2)-0.6847 0.6963 -0.2155 1.0196-0.6989 0.4216 -0.5778 -5.6527[Zn -256, 665; N(l) 128, -348; N(1’) 128, -349; N(2) 0,3 11Plane (V) : C(1)-(6), C(14)-0.8707 -0.0611 -0.4881 -3.1476-0.4584 -0.2677 -0.8475 - 12.7012[C(l) 1228,171; C(2) 511, -99; C(3) -68, -49; C(4) -841,121; C(5) -603, -30; C(6) 581, -107; C(14) -808, -61Plane (VI) : C(8)-(13)-0.1424 0.9813 -0.1297 5.1867- 0.7077 0.7012 -0.0864 -0.7623[C(8) 9, -9; C(9) 29, 5 ; C(10) -35, - 3 ; C(11) 3, 3; C(12)35, -6; C(13) -41, 91Plane (’i-‘) C(l’)--(G’), C(14’)0.1300 0.9732 -0.1896: 3.3 7960.4567 -0.8G15 -0.2221 --7.0091[C(l’) -170, - G ; C(2’) 481, 486; C(r3’) -294, 74; C(4’)-138, -529; C(5’) 2G1, -123; C(6’) --86, -436;C(14’) -52, 5361Plane (VI’) : C(8’)-( 13’)- 0.8699 - 0.0563 - 0.4900 - - 4.8882-0.7232 -0.1641 -0.8708 - 1 0 4490[C(8’) -10, 18; C(9’) -27, 38; C(10’) 57, - 8 8 ; Cill’) -49,8 2 ; C(l2’) 10, -26; C(13’) 19, -241Interplanar (1)- (1)- (11)- (111)- (’\-)- (V’)-angles (11) (IT) (17’) (117) ( \ 1) (VI’)[Zn(cbp)] 68.4 7.6 12.9 87.3 83.7 94.3[Zn(mbp)] 63.4 7.6 9.0 87.0 77.1) 92.3[Cu(mbp)j 58.6 16.8 17.5 89.0 82.7 87.8[Ni(mbp)] 71.8 22.0 22.0 89.0 82 3 82.3environments of [Ni(mbp)] and [Cu(mbp)] on the onehand and the d10 zinc complexes on the other, can b454 J.C.S.Daltontonian for a square pyramid. This raises the energy ofds--yl orbital by 26 and lowers that of dza by 26 (Figure9). Thus The net gain in CFSE is 26 for d9 and 0 for d8.attributed almost entirely to the &electron configuration.The difference between mbp and cbp, as viewed from themetal atom, is minimal because of the remoteness of thechloro- and methyl-substituents. A slight constrainton the comparison is the hydrogen-bonded water mole-cule in [Zn(mbp)]*H,O, but comparison of the two zinccomplexes shows that this is negligible compared to theeffect of changing the d-orbital configuration.Thecomplexes exhibit a progression from trigonal bipyra-inidal to square pyramidal geometry in the sequenceZn < Ni < Cu.The geometry of the zinc complexes results from acombination of lattice forces due to the specific mode ofpacking of the molecules in the crystals, the stericrequirements of the ligands and the mutual repulsion ofthe electronegative donor atoms. There are no netligand-field effects on the d10 configurations, and the closeapproach to trigonal bipyramidal geometry, presumablydue mainly to donor atom repulsion, attests to theflexibility of the ligand. Further support is providedby the structure of the cobalt(m) complex [Co(cbp)-(CNS)], which approaches quite close to the octahedralligand environment preferred by the low-spin d6 con-figurat ion.6The distortion of the nickel(I1) and copper(I1) complexestowards square planar geometry indicates that, asexpected, the crystal-field stabilization energy (CFSE),and hence the overall crystal-field splitting, is greater inthis geometry than in a trigonal bipyramid. Thespecific further distortion for Cu(cbp) compared withNi(cbp), vix. the lengthening of the C-N bond, can beattributed to the extra electron. This bond elongationcan be represented by an axial distortion operator(152) 6 added to the crystal-field diagonalized Hamil-..* - ..-- ----._ - - - --------.- -d,,dp I-&)octahedral square pyramidalFIGURE 9 Effect of axial distortion on d-orbital configurationa copper (11) complex in a square-pyramidal environmentis stabilized by such axial distortion, while a nickel@)complex is not, in agreement with the experimentalobservations. The e.s.r. spectra of Cu(cbp) can berationalized in terms of this model: Healy et aZ.l observedligand hyperfine splittings with the two (for this purposeequivalent) non-axial nitrogen donors, while failing toobserve splittings due t o the axial nitlogen, which wouldbe expected if the unpaired electron were in the d l ~ - - y eorbital, in the square plane of a distorted square pyramid.The slight difference between the co-ordination in thetwo zinc complexes is presumably due to constraint of thetwo ligand oxygens in [Zn(mbp)]*H,O set up by thehydrogen bonding to the water molecule.We thank the National Science Federation for financialsupport of this work.[5/784 Received, 28th A p i d , 19751D. P. Freyberg and E. Sinn, unpublished data

 

点击下载:  PDF (916KB)



返 回