首页   按字顺浏览 期刊浏览 卷期浏览 Chapter 13. Radiochemistry
Chapter 13. Radiochemistry

 

作者: D. S. Urch,  

 

期刊: Annual Reports Section "A" (Inorganic Chemistry)  (RSC Available online 1985)
卷期: Volume 82, issue 1  

页码: 371-388

 

ISSN:0260-1818

 

年代: 1985

 

DOI:10.1039/IC9858200371

 

出版商: RSC

 

数据来源: RSC

 

摘要:

13 Radiochemistry By D. S. URCH Chemistry Department Queen Mary College London El 4NS 1 Introduction This section of Annual Reports is devoted to a review of recent developments in those aspects of chemistry where radioactivity is of importance or interest rather than to the chemistry of those elements which happen to be radioactive (see Chapter 12). The main topics to be considered will be the production of specific isotopes the preparation of labelled compounds and a consideration of the chemical reactions that are initiated by nuclear reactions including decay. No new books on radiochemistry have appeared during 1985 but it is interesting to record that Choppin’s ‘Nuclear Chemistry’ has been translated into Russian.’ Recent general reviews have covered modem trends in radiochemistry,2 actinide chemi~try,~ and nuclear technology as well as radiochemical experiments for schools5 and colleges.6 Many popular articles have appeared to celebrate (if that’s the right word) the fortieth anniversary of the explosion of the first atomic bomb; particularly interesting is the account of work at Los Alamos from that time to the present day.’ 2 Isotopes Production.-Both chromatographic’ and thermal diffusion’ methods for the separ- ation of gaseous tritium labelled compounds have been described whilst molecular sieve 5A can be for the separation and concentration of tritiated water.The short-lived isotopes of carbon (l1C),I2oxygen (I5O),l2and chlorine (34mC1)’3,’4 ’ G. Choppin and Ya. Ridberg ‘Yadernaya khirniya.Osnovy teorii i primeneniya’ Ehnergoatornizdat Moscow U.S.S.R. 1984. * K. H. Lieser Nachr. Chem. Tech. Lab. 1985 33 408. L. R. Morss Radiochim. Acta 1984 36 17. R. H. Rodriguez Pasques ‘Introduccion a la tecnologia nuclear. Su desarrollo y perspectivas en America Latina’ EUDEBA Buenos Aires Argentina 1978. M. A. Malati and W. K. Wong Educ. Chem. 1984 21 156. E. Akatsu Nucl. Technol. 1982 59 532. ’J. D. Knight and J. E. Sattizahn Los Alamos Sci. 1983 8 2. M. Saeki T. Hirabayashi Y. Aratono T. Hasegawa and E. Tachikawa J. Nucl. Sci Technol. (Tokyo) 1983 20 762. ’0.Takayasu M. Takagi and T. Takeuchi Int. J. Appl. Radiat. Zsot. 1985,36,215. 10 R. C. Bindal S. Prabhakar and A. P. Jayaraman Radiochim. Acta 1984,36,215. I‘ T. Tabuchi T. Yanagi S.Imoto and K. Surnita Technol. Rep. Osaka Univ. 1983 33 455. 12 Y. Nishihara A. Tanaka K. Enoki H. Saji and K. Torizuka Radioisotopes (Tokyo) 1984 33 706. 13 F. Helus H. Gaspar G. Rettig and W. Maier-Borst J. Radioanal. NucL Chem 1985 94 149. 14 N. Rarnarnoorthy M. K. Das B. R. Sarkar and R. S. Mani Roc. Znt. Conf Radiopharmaceuticals and Labelled Compounds Tokyo 1984 IAEA Vienna Austria 1985 p. 107. 371 372 D. S. Urch can all be produced using a cyclotron. 34mCl is formed ~hen~~C1 is bombarded with 22 MeV a-particle~'~ At a lower or 34S with 22 MeV protons or 12 MeV deutron~.'~ a-particle energy (18 MeV) 35Cl reacd4 to produce 38K,but this isotope can also be made by the fast neutron irradiation of 43Ca.'6 A variety of techniques has been described mostly based on ion-exchange chromatography for the preparation of carrier-free transition metal isotopes e.g.48V from deutron irradiated titania,l7>l8 51Cr,19 52Fe,20 and 57C0.2167Ga is an important isotope in nuclear medicine and many paper^'^*^^-^' have described its production and separation in carrier-free form starting with the or de~tron~~ irradiation of zinc (66Zn). 77Br is also important in nuclear medicine. It can be produced by the a-particle (28 MeV) bombardment of 75As23,28 or together with 76Br by the decay of 76,77Krisotope^,'^ following the proton (16 GeV) irradiation of rubidium and strontium targets. New methods have been described for the prod~ction~**~' of 81Rb and ~alibration~~ [82Kr(p 2n)81Rb] (parent of the short-lived 81mKr)as well as for the of fission produced 85Kr.One of the most widely used isotopes in nuclear medicine is 99mTc which is produced by the decay of wmMo. Much attention therefore focuses upon this particular isotope of molybdenum. It can be made35 either by the neutron irradi- ati~n~~ of 98M0 or by separation from uranium fission fragment^.^' If the latter 15 D. N. Abrams E. E. Knaus L. I. Wiebe F. Helus and W. Maier-Borst Int. J. Appl. Radiat. Isot. 1984 35,1045. l6 L. N. Kurchatova V. I. Levin A. B. Malinin and I. N. Tronova AN Uzbekskoj SSR Tashkent Inst. Yadernoj Fiziki 1983 p. 72. " P. Grychowski B. U. Petelenz and J. Mikulski J. Radioanal. Nucl. Chem. 1985 89 23. 18 A. N. Nesmeyanov B. Z. Iofa L. N. Makagonova A.A. Abramov A. G. Maklachov A. I. Silat'ev and Yu. G. Sevost'yanov AN Uzbekskoj SSR Tashkent Inst. Yadernoj Fiziki 1983 p. 19. 19 K. E. Collins and C. Archundia Int. J. Appl. Radiat. Isot. 1984 35,910. 20 T. N. van der Walt F. W. E. Strelow and F. J. Haasbroek Talanta 1985 32,313. 21 E. S.Gureev T. Islamov V. S. Usachenko and A. Kh. Mamatkhazina AN Uzbekskoj SSR Tashkent Insf. Yademoj Fiziki 1983 p. 61. 22 D. F. S. Chamma A. G. da Silva and R. Weinreich Abs. Assoc. Brasileira de Quimica Rio de Janeiro 1982 p. 116. 23 M. D. Kozlova L. S. Kozyreva-Aleksandrova V. I. Levin and A. B. Malinin AN Uzbekskoj SSR Tashkent Inst. Yadernoj Fiziki 1983 p. 50. 24 J. Koernyei Izotoprechnika 1984 27 110. 25 T. Islamov V. S. Usachenko and A.Kh. Mamatkazina AN Uzbekskoj SSR Tashkent Inst. Yadernoj Fiziki 1983 p. 57. 26 L. Fernandes C. P. G. da Silva and M. F. de Barbosa Publication No. 54 Insituto de Pesquisas Energeticas e Nucleares Sao Paulo Brazil 1983. " T. Paradellis G. Vourvopoulis and E. Paleodimopoulis J. Radioanal. Nucl. Chem. 1984 84 263. M.A. V. Bastos A. G. da Silva and W. A. Newton Acad. Bras. Cienc. 1984,56 121. 29 E. G. Alekseev V. S. Gusel'nikov V. M.Zajtsev L. A. Win and T. V. Koneva Radiokhimiya 1984 26,667. 30 T. Bjroenstad T. Holtbekk and A. Ruud Oslo Univ. (Fysisk Inst.) Publication No. 84-02 Oslo Norway 1984. 31 P. Blaeuenstein I. Huszar C. Bajo 0. Gasser and P. A. Schubiger in 'Nuclear Medicine in Research and Practice' (Proc. Eur. Nuc. Med. Congress Helsinki 1984) ed.H. A. E. Schmidt and E. Vauramo Schattauer Stuttgart B.R.D. 1984 p. 843. 32 N. R. Williams P. 0.Childs D. A. Causer and A. B. M.G. Mostafa Eur. J. Nucl. Med. 1985 10 33. 33 N. Ootsuka T. Yamamoto and K. Tsukui Radioisotopes (Tokyo) 1984 33,853. 34 V. N. Nikonov Yu. N. Kazankin E. I. Bozhenko I. M. Buntseva F. A. Makhmutov V. V. Teplyakov and I. N. Bekman Radiokhimiyu 1984,26,332. 35 S. Abrashkin Report No. 1394 Israel Atomic Energy Commission Yavne Israel 1984. 36 L. Zsinka Izotoptechnika 1984 21 145. 37 P. P. Boldyrev L. S. Kozyreva-Aleksandrova and A. G. Kosarev AN Uzbekskoj SSR Tashkent Inst. Yadernoj Fiziki 1983 p. 121. Radiochemistry 373 method is used great care must be paid to the radiochemical purity of the to avoid contamination such as 82Br.39 Care must also be taken that auto-radiolysis does not degrade the column upon which the molybdenum is adsorbed; copper appears to stabilize alumina:' and zirconium molybdate gel has also been shown to be satisfa~tory.~~ Other isotopes of technetium which have been produced are 101 and 97 from the neutron irradiation of natural molybden~rn~~ and ruthenium43 respectively and 95mT~ by the cyclotron bombardment of The cyclotron can also be used to produce '02Rh from ruthenium'* and 97Ru from molybdenum (25-40 MeV a- particle^).'^ Techniques for the separation of ImmAg from 109Cd45 and for the production of '09Cd from silver4 have been described.A variety of novel methods has been used to purify "'In made by the irradiation of silver with 28 MeV a-particle~.~~.~~,~~ 1231 is also widely used in nuclear medicine and its particularly attractive nuclear properties have led to many different prepara- or cae~ium~'~~' tive e.g.proton bombardment of tell~rium'~~~' targets at different energies. New methods have also been described for the production of iodine-125 and -131.'* Isotopes of caesium can be made either by neutron irradiation of barium-130 [13'Ba(n y) 13'Ba(p' decay) 131Cs] or by the bombardment of sodium iodide with 37 MeV a-particles (to give '29Cs).'6 New methods for the preparation of many rare-earth isotopes have been given 139Ce (deutron bombardment of lanthan~m),~~ 151Sm,55 '55Tb,and 145Sm,54 153Gd,56 167~~. 16 Neutron-deficient isotopes of the heavier rare-earths can be made quite easily by spallation reactions initiated by the proton bombardment of a tantalum Furthermore '72Hf produced in this way can then be used as a source of 172Lu.59 Tantalum targets can also be used in the productionm of I8'W whilst 38 G.Bernhard W. Boessert 0. Hladik and R. Schwarzbach Kemenergie 1985 28 352. 39 R. McAuley R. Lull and R. Ice Eur. J. Nucl. Med. 1985 10 60. 40 J. L. Vucina and S. M. Milenkovic Isotopenpraxis 1985 21 216. 41 J. V. Evans and M. E. Shying Report No. E-599 Australian Atomic Energy Commission 1984. 42 G. A. Brodskaya AN Uzbekskoj SSR Tashkent Inst. Yademoj Fiziki 1983 p. 117. 43 P. Kastenmayer Diss. Thesis Naturwiss. Fak. 4 (Chemie und Pharmazie) University of Regensberg B.R.D.1984. 44 R. Finn T. Booth J. Sinnreich E. Tavano A. Gilson and A. P. Wolf ref 14 p. 47. 45 P. M. Wanek F. J. Steinkruger and D. C. Moody Roc. 5th Symp. NucL Chem. Radiochem. and Rad. Chem. University of Guanajuato Mexico 1984 p. 35. 46 E. S. Gureev T. Islamov V. S. Usachenko and A. Kh. Mamatkazina AN Uzbekskoj SSR Tashkent Inst. Yadernoj Fiziki 1983 p. 67. 47 J. A. Osso Jnr. M.Sc. Thesis University of Rio de Janeiro Brazil 1982. 48 A. F. Novgorodov G. Yu.Bayer A. Zelinski A. Kolachkovski and K. Shomeker Report No. 6-84-609 Joint Inst. Nucl. Res. Dubna U.S.S.R. 1984. 49 J. L. Q. de Britto A. G. da Silva and G. W. A. Newton ref 22 1982 p. 118. 50 J. Vincent Report No. TRI-PP-82-16 ACNP symposium on short-lived radionuclides Washington D.C.U.S.A. 1982. 51 A. Adilbish N. G. Zajtseva 0. Knotek M. Ya. Kuznetsova Yu. V. Norseev V. I. Fominykh V. A. Khalkin and V. G. Chumin AN Uzbekskoj SSR Tashkent Inst. Yademoj Fiziki 1983 p. 96. 52 J. Miller Izotoptechnika 1984 27 160. 53 G. D. Meyer P.Anderson T. N. van der Walt and R. G. Boehmer Radiochim Act4 1983 34,207. 54 A. D. Gedeonov V. V. Smirnov B. N. Shuvalov A. A. Nosov and E. N. Loginov AN Uzbekskoj SSR Tashkent Inst. Yadernoj Fiziki 1983 p. 35. 55 A. V. Baluev V. S. Mityakhina B. I. Rogozev and D. A. Sarychev ref 54 p. 202. 56 V. V. Smirnov A. D. Gedeonov B. N. Shuvalov A. V. Malyshenkov and E. N. Loginov ref:54 p. 195. 57 V. A. Khalkin and N. A. Lebedev J. Radioanal. Nucl. Chem. 1985,88 153. 58 Do Kim Tyung N.A. Lebedev Ngen Guin' Maj Nguen Kong Chang and V. A. Khalkin Radiokhimiya 1984 26 210. 59 N. A. Lebedev Eh. Kherrmann and L. Ehkhn Radiokhimiya 1984 26 223. 60 S. M. Gasita A. I. Silant'ev A. G. Maklachkov and B. Z. Iofa Radiokhimiya 1984 26 143. 374 D. S. Urch osmium ('s50s) and rhenium isotopes are formed6' when tungsten is bombarded with a-particles. Deutron bombardment of yields lS3Re. Radioactive gold (195mA~) has a variety of uses in nuclear medicine; new techniques have been described64965 for its separation from the parent isotope 195mHg. Other isotopes of gold 195 and 199 have also been prepared.66 Isotopes of thallium (e.g. 201 and 202) can be made by cyclotron irradiation" or by proton (660 MeV) bombardmed7 of mercury.Neutron irradiation of 209Bi68 and 226Ra69 together gives rise to 210Po and to 227A~ with 228Th respectively. 233Th can also be made by neutron irradiation7' (from 232Th). A variety of ion-chromatographic methods for the separation of 234Thfrom the elements of the 238Udecay series has been The application of the laser separation method to the isotopes of uranium has been facilitated by the p~blication~~ of high resolution fluorescence and absorption spectra for uranium vapour and for uranium hexafluoride. The plutonium isotopes 236 237 and 238 are formed when 237Np is bombarded with deutrons (9-25 MeV); 237Fupredomi-nate~.~~ The separation and purification of the isotopes 233Pa 237U,238i239Np,75 242Am,76and 253E~77 have also been described.Attempts to produce an isotope of element 107 by bombarding 249Bk with 22Ne particles have been rep~rted,~' part of an almost exclusively Russian preoccupation with the p~ssibility~~ of either making or detecting in nature elements with atomic numbers greater than 106. To this end cosmic rays and meteorites," manganese nodules,81 and exotic hot springss2 all have been scanned and all have been found wanting. Such a lack of experimental evidence continues to leave the field open83,84 for that new brand of science fiction 'the chemistry of the super-heavy elements'! 61 B. Z. Iofa L. N. Makagonova and Yu.G. Sevost'yanov AN Uzbekskoj SSR Tashkent Inst. Yadernoj Fiziki 1983 p. 84. 62 V. 0. Kordyukevich and N. P. Rudenko Radiokhimiya 1984 26 625. 63 V.0. Korkyukevich N. P. Rudenko and V. L. Giruts AN Uzbekskoj SSR Tashkent Inst. Yademoj Fiziki 1983 p. 78. 64 A. Rosevear and H.E. Sims U.K. Patent 2149562/A 1985. 6s K. J. Panek J. Lindeyer and H. C. van der Vlugt ref 31 p. 847. 66 G. A. Brodskaya AN Uzbekskoj SSR Tashkent Inst. Yademoj Fiziki 1983 p. 88. 67 A. F. Novgorodov A. Kolachkovski and Nguen Kong Chang ref 66 p. 234. 68 A. S. Abakumov Z. V. Ershova Yu.G. Klabukov B. V. Petrov and E. S. Prokin ref 66 p. 135. 69 G. S. Sinistyna B. I. Shestakov I. A. Shestakova V. A. Tsirlin V. M. Garbuzov and S. A. Ivanov ref 66 p. 178. 70 K. Grudpan and S. Moebius Chem. Ztg. 1985 109 109. 71 R. M. Garcia-Rendon R. M.Solache and D. Tenorio Rev. SOC.Quim. Mex. 1984 28 71. 72 Y. Inoue and M.Satoh Radioisotopes (Tokyo) 1984 33 291. 73 T. Arisawa Y.Maruyama Y. Suzuki M. Kato and Y. Naruse Report No. M-83-124 Japan Atomic Energy Research Inst. Tokyo Japan 1983. 74 S. Baba K. Hata M. Izumo R. Motoki and T. Sekine Int. J. Appl. Radiat. Isot. 1985 36 564. 75 S. Khuzhaev AN Uzbekskoj SSR Tashkent Inst. Yademoj Fiziki 1983 p. 130. 76 G. N. Shapkin Yu.S. Mis'ko and P. N. Moskalev ref 75 p. 125. 77 A. A. Elesin V. N. Nikolaev A. V. Klinov and E. A. Karelin ref 75 p. 191. 78 I. Zvara V. P. Domonov Z. Khyubener M. R. Shalaevskij S. N. Timokhin B. L. Zhjkov B. Ajkhler and G. V. Buklanov Radiokhimiya 1984 26 76. 79 V. Hnatowicz Vesmir 1983 62 173. 80 G. N. Flerov G. M. Ter-Akopyan and N. K. Skobelev Roc. 2nd. Int. Conf:Low Radioactivities 1980 ed.P. Povinec VEDA Bratislava Czechoslovakia 1982 p.217. 81 Yu. T. Chuburkov I. Zvara E. A. Sokol K. S. Chun and L. K. Al'pert Radiokhimiya 1983 25 520. 82 Yu.S.Korotkin G. M. Ter-Akop'yan A. G. Popeko T. P. Drobina and E. L. Zhuravela Radiokhimiya 1983 25 508. 83 I. Zvara Zh. Vses. Khim. 0-va D. I. Mendeleeua 1983 28 17. 84 V. I. Spitsyn Zh. Neorg. Khim. 1984 29 289. Radiochemistry 375 Properties.-It is now realised that half-lives can be slightly affected by chemical changes. An example of this effect has been reported” for ‘’’I and the changes correlated with Mossbauer data. 3 Labelled Compounds Much if not most of the effort put into the preparation of new labelled compounds is directed towards radiopharmaceuticals for nuclear medicine.86 Many reviews have appeared recently covering specific aspects of this work e.g.problems of organic synthesis87 or of production and analysis,g0 biochemical consider- ations:’ radiochemical aerosols:2 the advantages of using ‘hot-atom’ reaction^:^ and a critical discussion of the role of the cyclotron in producing positron-emitting isotopes.94 The production of radiopharmaceuticals has also been considered from a somewhat chauvinistic point of view for Brazil,” Hungary,96997 and Czecho- ~lovakia~~ as well as more generally for ‘developed’99 and ‘developing’lo0 countries. In the review that follows emphasis will be laid on new methods and developments of existing techniques for the production of labelled aompounds rather than attempt- ing to list all recently labelled molecules.Hydrogen (Tritium).-One of the simplest ways of introducing the tritium label into a molecule is direct exposure to tritium gas -the Wilzbach method. This usually leads to the formation of a large number of labelled by-products as has been shown in a recent detailed study of 3-fluorotol~ene.’~’ Despite this limitation it remains an effective method for labelling large molecules e.g. isoniazid.lo2 The reactive species in the Wilzbach process are presumably tritiated ions but translationally excited tritium atoms are also very reactive and can be used to initiate labelling. High specific activities with none of the complications usually associated with Wilzbach labelling have been rep~rted”~ when a beam of tritium atoms (2000 K) bombards a substrate target at 77 K.85 C. Eifrig Report No. 93 Zentralinstitut fur Isotopen- und Strahlen-forschung Leipzig D.D.R. 1984. 86 P. H. Cox ref 31 p. 797. 87 C. H. Collins ref 45 p. 29. 88 A. M. Robles A. S. Leon and E. S. Verdera Abstracts 4th Cong. Braz. SOC. Biology and Nucl. Med. Porte Alegre Brazil 1984 p. 74. 89 K. Debertin in ‘Imaging of metabolism and organ-function’ ed. H. A. E. Schmidt and W. E. Adam Schattauer Stuttgart B.R.D. 1984 p. 82. 90 G. A. Janoki L. Koeroesi B. Spett and G. Klivenyi re$ 14 p. 536. 91 D. R. Elmaleh E. Livini and S. Levy in ‘Diagnostic Imaging in Medicine’ ed. R. C. Reba and H. F. Davidwn Martinus Nijhoff The Hague Netherlands 1984 p. 299. 92 S. P. Newman in ‘Aerosols and the lung clinical and experimental aspects’ ed.S. W. Clarke and D. Pavia Butterworths London 1984 p. 71. 93 T. Nozaki in ‘Hot Atom Chemistry’ ed. T. Matsuura Kodansha Tokyo Japan and Elsevier Amsterdam Netherlands 1984 p. 404. 94 A. P. Wolf and J. S. Fowler ref 14 p. 23. 95 A. G. da Silva Report No. R-2886-F International Atomic Energy Agency Vienna Austria 1985. 96 G. Toth Izofopfechnika 1984 27 164. 97 L. Bursics Zzotopfechnika 1984 27 171. 98 F. Melchiar K. Svoboda and M. Hrasdil Jad. Energ. 1984 30,425. 99 G. Subramanian ref 14 p. 395. loo A. E. Mitta reJ 14 p. 411. 101 C. T. Peng and 0. Burchman Znt. J. Appl. Radial. Zsof. 1985 36 414. 102 K. Winsel H. Iwainsky E. Mittag M. Kiessling and H. Koehler Zsofopenprris 1985 21 310.103 A. N. Nesmeyanov E. F. Simonov Eh. S. Filatov and A. V. Shishkov AN Uzbekskoj SSR Tashkent Inst. Yadernoj Fiziki 1983 228. 376 D. S. Urch Tritium gas in the presence of a suitable catalyst such as platinum or palladium can be used to label many molecules in solution e.g. aflatoxin-B '04 and D-galactose D-mannose and 2-deoxy-~-glucose.'~~ A variation of this method is to adsorb the tritium gas on the metal first; compounds containing nitro alkene and carbonyl groups,'06 including lipids and prostaglandin^,'^' can be successfully labelled in this way. Tritiated molecules (benzene toluene) when activated by adsorption on zeolites can also be used to label a wide range of other compounds.'08 Other methods based on exchange have used tritiated water to produce labelled benzaldehyde (acid cataly~is'~~) or aromatic carboxylic acids and carboxamides [rhodium( 111) chloride cata1yst''OI.Tritium gas can also be used as a reducing agent and so lead to the formation of labelled molecules e.g. thapsigargin,"' 5-hydroxymethyl uracil,' l2 and N-(3-0xo-4-hexanoy1)homoserine lactone.' l3 A much more widely used technique however is catalytic reductive dehalogenation in which tritium atoms are induced to replace halogen atoms. The method has the advantages of simplicity accuracy in the positioning of the label and ease of execution. Some recent examples of its use are the formation of labelled catecholamine,' l4 nadolol,' l5 uracil,' l6 diaminopimelic acid,' '' 4-(4-butrophenyl)aminophenylisothiocyanate,"8alapr~clate,"~ as well as hormones'20 and antipsychotic drugs.'21 Particularly interesting is the kinetic study that has been made of the palladium-catalysed reaction leading to the formation of labelled nucleic acids from their bromo-derivatives.'22 Carbon.-Much effort continues to be directed towards the development of new techniques for the rapid incorporation of "C into an ever increasing range of molecules for use in nuclear medicine but new preparations of 14C-labelled com- pounds continue to be made.Methods for the efficient production of basic starting 104 K. Veres Czech. Patent 208439/B 1984. 105 Zhao Xialing Liu Jingzhi and Shen Defu ref 14 p. 331. 106 T. C. Peng and 0. Buchman Tetrahedron Lett. 1985 26 1375. 107 V.P.Shevchenko and N. F. Myasoedov AN Uzbekskoj SSR Tashkent Inst. Yadernoj Fizikt 1983,166. lo* M. A. Long J. L. Garnett and P. G. Williams J. Chem. SOC.,Perkin Trans. 2 1984 2105. G. Angelini M. Speranza M. Felici and M. Luna J. Radioanal. Nucl. Chem. 1984 87 283. I10 W. J. S. Lockley J. Chem. Res. (S) 1985 p. 178. 111 S. B. Christensen J. Labelled Compd. Radiopharm. 1985 12 71. 112 E. Mittag J. Roemer T. Brankoff and S. Noll Wiss. 2. Karl-Man-Univ. Leipzig Math. Natunviss. Reihe 1985 34 177. H. B. Kaplan E. P. Greenberg A. Eberhard and C. Widrig J. Labelled Compd. Radiopharm. 1985,22 387. 114 0. Buchman M. Shimoni A. Cohen Y. Hagag and I. %-Bar Report No. IA-1404 Israel Atomic Energy Commission Tel Aviv Israel 1984 p. 162. 115 J.E. Oatis Jnr. T. D. Eller and D. R. Knapp J. Labelled Compd. Radiopharm. 1985 22 329. 116 N. F. Myasoedov G. V. Sidorov 0. B. Kuznetsova M. D. Frank-Kamenetskaya T. Yu. Lazurkina and V. A. Orlova Radiokhimiya 1984 26 341. 117 D. Schott B. Rousseau J. P. Beaucourt J. P. Lellouche and L. Pichat J. Labelled Compd Radiopharm. 1985 22 127. 118 B. Anjaneyulu R. K. Maller K. Nagarajan W. Kueng and B. Win J. Labelled Compd. Radiophann 1985 22 313. 119 S. Bengtsson L. Gawell T. Hoeberg and C. Sahlberg J. Labelled Compd. Radiopharm. 1985 22 427. 120 K. Muramoto J. Ramachandran P. Moshitzky and S. W. Applebaum Znt. J. Pept. Protein Rex 1984 23 443. 121 S. D. Wyrick and R. B. Mailman J. Labelled Compd. Radiopharm. 1985 22 189. N. F. Myasoedov and G.V. Sidorov AN Uzbekskoj SSR Tashkent Inst. Yademoj Fiziki 1983 151. Radiochemistry 377 materials have been described "C-labelled carbon carbon dioxide,'24 alkyl halide^,'^^-'^^ and hydrocyanic acid (from the Pt-catalysed reaction of "CH4 with NH3),127 14C-labelled carbon monoxide,128 barium ~arbonate,'~~ and acid chloride^.'^^ Many new ways of preparing l-["C]-D-glUCOSe and related sugars by both photosyntheti~'~'~'~~ and other (from H"CN)'33-'35 routes have been described with special attention being paid to product A series of Czech patents and papers has appeared covering similar methods for making 14C-labelled s~gars.'~'-'~' Many new "C-labelled species have been reported butan-1-01,'~~ cyanate and urea,144 nitroso~reas,'~~ both race mi^'^^ 5,5-dimethyloxazoladine-2,4-dione,1~ and other amin~-acids'~~-'~' and ~-phenylalanine'~~ as well as th~midine,"~ pro-line,'53 and ~arfentanil."~ A wide range of new 14C compounds has also been made but as standard methods are generally used no special comment is necessary.lZ3 S.C. Jones G. D. Robinson Jnr. and E. McIntyre Int. J. Appl. Radiat. Isot. 1984 35 721. 124 T. van der Walle C. van de Casteele F. de Guchteneire L. Meulewaeter D. van Haver P. Goethals and G. Slegers Int. J. AppL Radiat. Isot. 1985 36 469. 125 F. Oberdorfer M. Hanisch F. Helus and W. Maier-Borst Int. J. Appl. Radiat. Isot. 1985 36 435. 126 B. Langstroem G. Anoni G. Bergson C. Halldin P. Gullberg K. Nagren A. Rimland H. Svaerd and P. Malmborg ref 31 p.815. 127 C. van de Casteele D. van Haver N. A. Rabi P. Goethals J. Sambre and G. Slegers re5 14 p. 293. 128 R. J. Hardy J. C. Sheppard and M. J. Campbell Int. J. AppL Radiat. Isot. 1984 35 1071. 129 Technical Specification ON-4041 15 Prague Cezchoslovakia 1982. 130 H. Parnes and S. de Keczer J. Labelled Compd. Radiopharm. 1985 22 287. 131 M. Monma K. Ishiwata R. Iwata and T. Ido Radioisotopes (Tokyo) 1984 33 15. 132 H. Denutte G. Slegers P. Geothals C. van de Casteele and A. de Leenheer Int. J. Appl. Radiat. Isot. 1985 36 82. 133 C.-Y. Shiue and A. P. Wolf J. Labelled Compd. Radiopharm. 1985 22 171. 134 C.-Y. Shiue and A. P. Wolf U.S. Patent 4439414/A 1984. 13' S. Stone-Elander J. L. G. Nilsson E. Ehrin B. Garmelius P.Johnstoem G. Blomqvist L. Eriksson I. Sjoegren L. Widen and T. Greitz Eur. J. NucL Med. 1985 10 481. 136 H. Saji A. Tanaka and Y. Magata Radioisotopes (Tokyo) 1984 33 680. 137 J. Zemek S. Kucar and J. Kolina Czech. Patent 209572/B 1982. V. Bilik P. Biely and J. Kolina Czech. Patent 209557/B 1982. 139 J. Zemek S. Kucar and J. Kolina Czech. Patent 209571/B 1982. 140 V. Bilik P. Biely and J. Kolina Chem Zuesti 1984 38 491. 141 L. Skala Radioisotopy 1984 25 331. 142 G. Del Fiore J. M. Peters L. Quaglia J. L. Piette R. Cantineau C. de Landsheere D. Raets and P. Rigo J. RadioanaL Nucl. Chern 1984 87 1. 143 P. J. Kothari R. D. Finn M. M. Vora T. E. Boothe A. M. Emran and G. W. Kabalka Int. J. AppL Radiat. Isot. 1985 36 412. 144 T.E. Boothe A. M. Emran R. D. Finn M. M. Vora and P. J. Kothari Int. J. Appl. Radiat. hot. 1985 36 141. 145 M. Diksic S. Farrokhzad Y. L. Yamamoto and W. Feindel J. Radioanal. Nucl. Chem. 1985 89 45. 146 M. Diksic Int. J. Appl. Radiat. Isot. 1984 35 1035. 147 C. Halldin and B. Laangstroem Int. J. Appl. Radiat. Isot. 1984 35 779. I48 C. Halldin and B. Laangstroem Int. J. Appl. Radiat. Isot. 1984 35 945. I49 H. Lundquist B. Langstroem and M. Malmquist 1. RadioanaL Nucl. Chem 1985 89 79. 150 J. M. Bolster W. Vaalburg T. H. van Dijk J. B. Zijlstra A. M. J. Paans H. Wynberg and M. G. Woldring Int. J. AppL Radiat. Isot. 1985 36 263. 151 L. E. Washbum T. T. Sun B. L. Byrd and A. P. Callahan J. Labelled Compd. Radiopharm. 1985 22 135.152 B. M. Sundoro-Wu B. Schmall P. S. Conti J. R. Dahl P. Drumm and J. K. Jacobsen Int. J. AppL Radiat. Isot. 1984 35 705. 153 J. M. Bolster W. ten Hoeve W. Vaalberg T. H. van Dijk 1. B. Zilstra A. M. J. Paans H.Wynberg and M. G. Woldring Int. J. AppL Radiat. Isot. 1985 36 339. 154 R. F. Dannals H. T. Ravert J. J. Frost A. A. Wilson H D. Bums and H. N. Wagner Znr. J. AppL Radiat. Isor. 1985 36 303. 378 D. S. Urch Nitrogen.-The short half-life of 13N(10 min) poses similar problems for its incorpor- ation into specific molecules as does "C. 13NH3 is the favoured starting material from which preparations of labelled glutam am ate,'^^ ~isplatin'~~ (cf ref 265) P-~henethylamine,'~~ and P-ni~otinamide'~~*'~~ adeno~ine,'~~ have been reported.Oxygen.-The chemistry that can be attempted with 150 is even more limited than that for 13N but despite the short half-life (2 min) methods have been described for the production of l5O-labelled water,'23 both from C1502 and from I5O2by reduction with hydrogen.'6o Fluorine.-The successful and rapid preparation of 18F-labelled organic compounds depends upon a judicious choice of the initial I8F species. Labelled difluorine itself can be used as in the recent preparations of 4-fl~oroantipyrine'~' or of aryl fl~orides,'~~?~~ but more often the nucleophilic power of the fluoride anion is exploited. Thus labelled 2-fl~oronicotine'~ was prepared from the corresponding bromo-compound simply by refluxing with Cs 18F and tetraethyl ammonium ['8F]fluoride (from the hydrolysis of ['8F]fluorotrimethyl ~ilane'~~.'~~) has been used to make ['8F]acetylcyclofoxy'67 as well as many fluoro-derivatives of Nucleophilic displacement of the nitro-group in p-nitrobenzonitrile by the fluoride anion leads to the formation of p-['8F]fluorobenzonitrile,'68 a useful starting material for many compounds used as neuroleptic drugs.Other fluoride carriers that have been investigated recently include H18F K18F and KB18FF3 (used to prepare 2-fluorobenzoic acid'69) and KH 18FF used in the preparation of 2-deoxy-2-[ '8F]-~- glucose.'70 Acetyl hypofluorite is also an effective fluorinating agent which has been used to make the same labelled sugar'71 as well as 5-['8F]fluorocytosine'72 and to cleave aryl-tir~'~~ bonds producing fluoro-labelled aromatic com- or aryl-~ilicon'~~ pounds.155 K. Suzuki and K. Tamate Znt. J. Appl. Radiat. Zsot. 1984 35 771. 156 A. J. L. Cooper K. C. Risenspire J. Z. Ginos and D. A. Rottenberg J. Labelled Compd. Radiopharm. 1985 22 509. 157 T. Tominaga M. Hirobe 0.Inoue T. Irie K. Suzuki and T. Yamasaki Znt. J. Appl. Radiat. lsot. 1985 36,555. 158 T. Irie 0. Inoue K. Suzuki and T. Tominaga Znt. J. Appl. Radiat. Zsot. 1985 36 345. 159 R. H. D. Lambrecht G. Slegers A. Claeys and C. van de Casteele re$ 14 p. 321. 160 H. Saji Y. Yonekua K. Torizuka T. Tokui Y. Nishihara and A. Yokoyama Radioisotopes (Tokyo) 1984 33 61 1. 161 C. Y. Shiue and A. P. Wolf U.S. Patent 4436717/A 1984. 162 M. J. Adam B. D. Pate T. J.Ruth J. M. Berry and L. D. Hall Can. J. Chem. 1983 61 658. 163 M. J. Adam T. J. Ruth S. Jivan and B. D. Pate Report No. TRI-PP-83-87 TRIUMF Vancouver Br. Columbia Canada 1983. 164 J. R. Ballinger B. M. Bowen E. S. Gamett G. Fimau and F. W. Teare Znt. J. Appl. Radiat. Zsot. 1984 35 1125. L. G. Hutchins A. L. Bosch M. S. Rosenthal R. J. Nickles and S. J. Gatley Int. J. Appl. Radiat. hot. 1985 36 375. 166 M. S. Rosenthal A. L. Bosch R. J. Nickles and S. J. Gatley Znt. J. Appl. Radiat. hot. 1985 36 318. 167 M. A. Channing W. C. Eckelman J. M. Bennett T. R. Burke Jnr. and K. C. Rice Znt. J. Appl. Radiat. Zsot. 1985 36 429. 168 C. Y. Shiue J. S. Fowler A. P. Wolf M. Watanabe and C. D. Amett J. Nucl. Med. 1985 26 181. 169 A. D. Strouphauer C. L.Liotta and R. W. Fink Znt. J. Appl. Radiat. Zsot. 1984,35 787. 170 P. A. Beeley W. A. Szarek G. W. Hay and M. M. Perlmutter Can. J. Chem. 1984,62 2709. 171 M. J. Adam T. J. Ruth S. Jivan and B. D. Pate Znt. J. Appl. Radiat. Zsot. 1984 35 985. 172 G. W. M. Visser S. Boele G. H. J. N. hops J. D. M. Herscheid and A. Hoekstra Nucl. Med. Commun. 1985 6 455. 173 M. Speranza G. Angelini C.-Y. Schiue A. P. Wolf and D. S. Wilbur J. Chem. SOC.,Chem. Commun. 1984 1448. Radiochemistry 379 Phosphorus.-Tri-alkyl [32P]phosphates can be prepared by the neutron irradiation of mixtures of carbon tetrachloride with the appropriate alc~hol.'~~.'~~ The labelling reaction is initiated by the recoil energy of the 32P atom [35Cl(n CU)~~P]. Methods for the preparation of compounds labelled with both 3H and 32Phave also been de~cribed.'~~ Sulphur.-The preparation of 35Slabelled amino-acids dithio-oxamide 2-amino- thiazole and sulphanilic acid by isotopic exchange has been de~cribed.'~~ Chlorine.-Rapid methods for the incorporation of short-lived 39Cl into alkyl halides have been given,178 whilst more conventional techniques were used to prepare labelled epoxy-nucleosides from H36Cl.i79 Selenium.-The preparation of dialkyl [75Se]selenides has been described'80s181 as well as methods for the production from dimethyl selenide,'8a of a range of biochemically interesting molecules labelled with 75Se.Other recently reported labelled selenium compounds have included 24-(isopropylseleno)chol-5-en-3~-o1182 and selenium analogues of d0~amine.l~~ Bromine.-Halogen exchange is a simple way to introduce the 82Br label into a molecule.Substituted ~racils'~~ and tetracycline^'^^ can be labelled in this way; in steroid^'^' the exchange is facilitated by the use of crown ethers. Chloramine-T was used to catalyse the replacement of a carboxyl group in a series of deoxyuridines.'86 75Br and 77Br can also be incorporated into specific radiopharmaceutical compounds e.g. e~tradiol'~~ and bromperidol." and its derivatives,'88 nor-~imelidine,'~~ Technetium.-99mTc-labelled compounds are probably the most widely used of all radiopharmaceuticals." Most syntheses start with pertechnetate the purity of which is most imp~rtant.'~~ This anion is then reduced to enable the technetium to be incorporated into a wide variety of complexes.Thus stannous(I1) chloride can be 174 A. M. Makarov A. S. Rodygin and V. M. Khrokhalev Radiokhimiya 1984,26 215. 175 A. M. Makarov G. K. Genkina and T. A. Mastryukova Radiokhimiya 1984,26 818. 176 E. Bauschke B. Drescher and A. Muenzenberg G.D.R. patent 218962/A 1985. 177 M. F. Barakat M. El-Banna A. N. Farag and L. Souka Isotopenpraxis 1985,21 321. 178 M. Yagi K. Masumoto Y. Murano and G. Izawa Int. J. Appl. Radiat. Zsot. 1985,36 69. 179 Y.W. Lee J. R. Mercer E. E. Knaus and L. I. Wiebe Int. J. Appl. Radiat. Isof. 1984,35 1053. 180 S. J. Foster R. J. Kraus and H. E. Ganther J. Labelled Compd. Radiopharm. 1985,22 301. 181 Y. F. Liu H. Q. Qian Q. X. Zhang X. Y. Wang J.G. Sun and B. Z. Li ref 14 p.435. 182 F. F. Knapp Jnr. T. A. Butler L. A. Ferren A. P. Callahan C. E. Guyer and J. L. Coffey J. Med. Chem. 1983,26 1538. 183 S.A. Sadek G. P. Basmadjian P. M. Hsu and J. A. Rieger J. Med. Chem. 1983,26 947. 184 V. P.Mironov V. P. Kudryashov L. E. Grushevich and T. S. Kuz'mina AN Uzbekskoj SSR Tashkent Inst. Yadernoj Fiziki 1983,p. 171. 185 L. Boli J. Tutai L. Zhenghao L. Cheng M. Kojima and M. Maeda Int. J. Appl. Radiat. Isof. 1985 36 561. 186 J. Samuel E.E. Knaus L. I. Wiebe and D. L. Tyrell Znf. J. Appl. Radiat. Isof. 1984,35 1949. 187 M. D. Hylarides P. L. Buska F. A. Mettler and D. S. Wilbur J. Labelled Compd. Radiopharm. 1985 22 437. 188 M. D. Hylarides A. A. Leon F. A. Mettler and D. S. Wilbur J.Labelled Compd. Radiopharm. 1985 22 443. 189 G. Kloster P. Laufer and J. Hanus J. Labelled Compd. Radiopharm. 1985,22 397. 190 M.Suehiro F. Yokoi T. Nozaki K. M. Kubo and M. Iwamoto rej 14 p. 311. 191 A. Laznickova and L. Konrad Radioisotopy 1983,24 817. 192 0.H.Pliego and A. E. A. Mitta Report No. 474 Comision Nacional de Energia Atomica Buenos Aires Argentina 1982. 380 D. S. Urch used to produce technetium(v) dimercaptosuccinic (a useful tumour imaging agent) or complexes with sucrose,197 gl~tamate,'~~ or peni~i1lamine.l~~ Potassium chlorotungstate(II1) can be usedZoo in the same way. A large number of preparations has been reported recently of derivatives of the technetium-iminodiacetic acid complex.201-207 Other complexes have included methyl-enediphosphonate derivative^^^^'^^^ and alkylene amine oximes.210 The preparation of sodium tetrachloronitridotechnetate has been describedZ1' from which a series of complexes containing the 99mT~N group can be made.212 Methods have also been described for labelling (using the term loosely) very large molecules such as fibrinogen,213 ble~mycin,~~~ serum albumen,215 monoclonal anti- bodies,216 and protein^.^^^,^^^ Ruthenium-Ruthenocenoyl-glycine derivatives labelled with 97R~ or lo3Ru can be prepared from the corresponding iron compounds by exchange.218 Indium.-Techniques have been described for the tagging of large molecules such as monoclonal antib~dies~l~-~~l and also leucocytes222 and lymphocytes223 with 111 In.193 K. Endo H. Ohta H. Sakahara T. Nakajima M. Koizumi N. Hata K. Horiuchi A. Yokoyama and K. Torizuka ref 14 p. 201. 194 M. T. Nunes L. C. Paticio I. Castanheira and M. Coimbra ref 14 p. 187. 195 G. Westera A. Gadze and W. Horst Znt. J. Appl. Radiat. Zsot. 1985 36 311. 196 J. Imre J. Radioanal. Nucl. Chem. 1984 87 301. 197 M. C. Gil N. Godoy P. Mena C. Sole and J. Munoz ref 14 p. 273. 198 D. E. Campos A. S. Leon G. M. Cha and P. H. Cox Abstracts 4th Congress of the Brazilian SOC. Biol. and Nucl. Med. 1984 p. 71. 199 D. L. Johnson A. R. Fritzberg B. L. Hawkins S. Kasina and D. Eshima Inorg. Chem. 1984 23,4204. 2oo S. Vilcek M. Kalincak and V. Machan J. Radioanal. Nucl. Chem. 1985 88 359. 201 A. S. Leon E. S. Verdera A.M. Robles S. Gama and M. Billinghurst ref 14 p. 267. 202 N. H. Agha A. M. Al-Hilli N. D. Dahir M. S. Al-Hissoni and M. N. Jasim Nuklearmedizin 1985 24 96. 203 B. Zmbova D. Konstantinovska-Djokic and I. Tadzer Znt. J. Appl. Radiat. Zsot. 1985 36 389. 204 D. V. S. Narasimhan and R. S. Mani J. Radioanal. Nucl. Chem. 1985 88 301. 205 B. Angelis J. Cifka and I. Cifkova Abstracts 1st Congress Czech. SOC. Nucl. Med. and Rad. Hygiene 1981 p. 2. 206 D. V. S. Narasimhan P. Vanja S. M. Banodkar and R. S. Mani J. Radioanal. Nucl. Chem. 1984 129. 207 E. S. Verdera A. S. Leon A. M. Robles A. Correa G. Oliver S. Gamma S. Lanzzeri and A. E. A. Mitta Report 475 Comision Nacional de Energia Atornica Buenos Aires Argentina 1982. 208 E. K. J.Pauwels R. I. J. Feitsma and J. Blom Nucl. Geneeskd. Bull. 1983 5 84. 209 F. M. P. Lindelauf and S. K. Sijtma ref 208 1983 5 89. 210 D. E. Troutner and W. A. Volkert South African Patent 84/3069/A 1984 and Australian Patent 84/27118/A 1984. 211 J. Baldas and J. Bonnyman Inr. J. Appl. Radiat. Isot. 1985 36 133. 212 J. Baldas and J. Bonnyman ref:14 p. 179. 213 M. A. T. M. de Almeida and C. P. G. da Silva Publication No. 62 Instituto de Pesquisas Energeticas e Nucleares Sao Paulo Brazil 1984. 214 B. S. Nurlaila R. S. Wayan and N. Wachdiat Majalah BATAN 1983 16 48. 21s M. A. A. Al-Janabi and S. 0. Moussa J. Radioanal. Nucl. Chem. 1985 88 403. 216 Y. Arano Y. Magata T. Furukawa K. Horiuchi A. Yokohama K. Endo and K. Torizuka reJl4 p.143. 217 (a) D. R. Crockford and B. A. Rhodes Calif. Patent 1177393/A 1984; (b) D. W. Wong Calif. Patent 1157374/A 1983. 218 G. Schachschneider and M. Wenzel J. Labelled Compd. Radiopharm. 1985 22 235. 219 J. C. Saccavini J. Bruneau J. Grzyb M. Bourdoiseau and J. F. Chatal reJ 14 p. 153. 220 A. C. Perkins M. V. Pimm and M. K. Birch Eur. J. Nucl. Med. 1985 10 296. 221 T. S. T. Wang R. A. Fawwaz P. Giacomini P. Richards M. Hardy P. 0. Alderson S. C. Srivastava and S. Ferrone. Nuklearmedizin 1984 23 193. 222 P. J. Mountford M. J. Allsop F. M. Hall C. P. Wells and A. J. Coakley Eur. J. Nucl. Med. 1985 10 304. 223 N. S. M. C. Ghaleb S. Roath and P. Wyeth Eur. J. Nucl. Med. 1985 10 148. Radiochemistry 381 Iodine.-Four useful general methods for the incorporation of radioactive iodine isotopes usually 1311 1251,or 1231have been reviewed the use of organoborane~,~~~ the use of copper salts to catalyse halogen exchange reactions in aromatic the use of heterogeneous catalysts to stimulate hydrogen as well as halogen exchange with iodine,226 and the use of ch10ramine-T.~~~ This latter method has been used for labelling metaraminol,228 metane~hrine,~~~ and castor oil together with other naturally occurring long-chain fatty acids.230 There has been continued and extensive in the production of labelled iodo-derivatives of these acids both with and without the incorporation of tellurium,240 because of their use as myocardial imaging agents.Many methods have also been reported for the preparation of derivatives of iodo-steroids (e~trone,~~~ 17p-hydroxy-4-androstene-e~tradiol,~~l-~~~ 3-0ne,~~ and other hormone-type molecules.246248 The pre- and chole~terol'~~,~~~) paration of labelled iodo-de~xyuridines'~~~~~~ has been and iodo-g~anidines~~~ described and many larger molecules have been labelled with either 1251or 1311 these include hipp~ran,~~' fibrinogen,254 nicotinic insulin,252 aflat~xin-B,,~~~ acetylcholine antib~dies,~~~.~~~ Current interest in 1231lies almost and 224 G.W. Kabalka Acc. Chem. Res. 1984 17 215. 225 V. I. Stanco N. G. Iroshnikova A. F. Volkov and A. I. Klimova Int. 1. Appl. Radiat. Isot. 1984,35,1129. 226 T. E. Boothe R. D. Finne M. M. Vors A. M. Emran and P. J. Kothari Int. J. Appl. Radiat.Isot. 1984 35 1138. 227 G. Toth ref 14 p. 359. 228 Y. Ohmomo A. Yokoyama K. Kawai Y. Arano K. Horiuchi C. Tanaka H. Saji and K. Torizuka Eur. J. Nucl. Med. 1985 10 269. 229 I. Ikeda K. Iinuma and K. Kurata ref 14 p. 369. 230 E. Hallaba A. Al-Suhybani F. S. Zaki and M. E. Abdullah J. Radioanal. Nucl. Chem. 1985 89 97; see also ref 14 p. 211. 23 1 E. Hallaba A. Al-Suhybani and F. S. Zaki ref 14 p. 542. 232 E. Hallaba A Al-Suhybani and F. S. Zaki J. Radioanal. Nucl. Chem. 1985 90 225. 233 D. R. Elmaleh E. Livini R. Okada F.-L. Needham J. Schleuederberg and H. W. Strauss Nucl. Med. Commun. 1985 6 287. 234 H. Dougan J. S. Vincent and D. M. Lyster J. Radioanal. Nucl. Chem. 1985 89 71. 235 M. M. Goodman F. F. Knapp Jnr. F. Mauser and P.Richards J. Radioanal. Nucl. Chem. 1985,89,63. 236 J. Steinbach G. J. Beyer and E. Lohr Radiol. Diagn. 1985 26 155. 237 M. M. Goodman F. F. Knapp Jnr. D. R. Elmaleh and H. W. Strauss J. Org. Chern. 1984,49 2322. 238 A. Bardy M. Comet S. Coornaee J. P. Mathieu F. Riche and M. Vidal US Patent 4 476 106/A 1984. 239 G. El-Shaboury and M. El-Garhy Int. J. Appl. Radiat. Isot. 1984 35 805. 240 F. F. Knapp Jnr. P. C. Srivastava A. P. Callahan E. B. Cunningham G. W. Kabalka and K. A. Sastry J. Med. Chem. 1984 27 57. 241 W. Brandau M. Eisenhut and D. M. Taylor Int. J. Appl. Radiat. Isot. 1985 36 379. 242 R. N. Hanson D. E. Seitz and J. C. Bottaro Int. J. AppL Radiat. Zsot. 1984 35 810. 243 R. N. Hanson and L. A. Franke J. Nucl. Med. 1984 25 998. 244 I.Kozak P. Dvorak and R. Hampl Czech. Patent 203 711/B 1983. 245 G. W. Kabalka R. S. Varma V. K. Jinaraj L. Huang and S. K. Painter J. Labelled Compd. Radiopharm. 1985 22 333. 246 J. Mucha P. Talan and M. Dobias Czech. Patent 209 960/B 1982. 247 M. de Bernal Report No. 2636-F International Atomic Energy Agency Vienna Austria 1984. 248 P. Hradilek K. Kopicka and L. Konrad ref 205 p. 42. 249 L. Konrad P. Hradilek and K. Kopicka re$ 205 p. 84. 250 D. E. Heggeli B. I. Brorson and P. 0. Bremper Report No. E-831005 Institute for Energy Technology Kjeller Norway 1983. 25 1 Dj. Sukiyati R. S. Wayan K. H. Nanny and Z. Misyetti Majalah BATAN 1983 16 72. 252 C. H. De Mesquita M. M. Hamada and J. A. Camnho Arq. Bras. Endocrinol. Metabiol. 1983 27 19. 253 K.Veres V. Dolezalova and D. Pichova Czech. Patent 208 440/B 1983. 254 M. Richter M. Paintz G. Nowak H. E. Schmidt and H. Herzmann Folia Haematol. (Leipzig) 1984 111 862. 255 T. Barkas and B. W. Fulpius Biochem. Soc. Trans. 1984 12 813. 256 M. I. Velazco T. Ba kas and B. Fulpius ref 255 1984 12 815. 382 D. S. Urch exclusively in the production of labelled N-isopropyl-p-i~doamphetamine;~~~-~~~ ‘231-hippuran has also been reported.264 Platinum.-The microscale synthesis of a suite of platinum anti-tumour drugs including cisplatin [cis-RC12(NH3)2],labelled with 191Pt has been reported265 (cJ re$ 156). Astatine.-Simple halogen exchange has proved an effective way of producing 6-[211At]astatomethyl-19-norcholest-5(10)-en-3~-o1;’85 astatotyrosine266 and para-astatobenzoic have also been prepared containing the same isotope.4 Recoil Atom Recoil Ion Chemistry Nuclear reactions which can result either from bombardment with charged particles or by spontaneous decay will confer translational energy upon the resulting nuclei. This ‘recoil’ energy will be dissipated in collisions which are often destructive but which may lead to the recoil species becoming chemically bound. As the recoil species may be neutral or ionized and may in either case be electronically excited exotic and new chemistry can result. Recent developments have been reported in the proceedings of two international symposia held in Hungary268 and other progress in this field inaccurately known as ‘hot-atom’ chemistry is reviewed below.Hydrogen (Tritium).-The reactivity of recoil tritium atoms with many aromatic molecules has been investigated (toluene,270 ben~onitrile:~~ and chl~roanilines,~~~ lithium P-phenylpr~pionate~~~). When an excess of an inert reagent is added a marked preference for reaction with the aromatic ring is shown. This shows that lower energy ‘hot’ atoms are more selective in their reactions and that substitution is easier at an aromatic site than at a saturated one. With rather smaller molecules 257 Y.Legoux M. Cieur R. Goutheraud J. Drouet C. Crouzel and A. Syrota Int. J. Appl. Radiat. Zsot. 1985 36 63. 258 I. P.Brizola A. Schuenke J. N. Baldauf and A. M. de Castro Fiori ref 198 p. 72. 259 J. J. R. Mertens W. Vanryckeghem and A.Bossuyt J. Labelled Compd. Radiopharm. 1985 12 89. 260 J. J. R. Mertens W. Vanryckeghem and A. Bossuyt ref 14 p. 303. 261 M. Bourdoiseau G. Desplanches S. Coornaert J. R. Rapin J. L. Moretti L. Delmon P. Moingeon H. Campos and B. L. Holman reJ 14 533. 262 D. Lyall Nucl. Med. Commun. 1985 6 485. 263 T.H. Lin R. M.Baldwin J. L. Wu H. S. Winchell D. D. True T. C. Bruggman B. M. Mar and J. F. Lamb Nippon Aisotopu Hoshasen Sogo Kaigi Hobunshu 1984 16 189 (16th Japan Conf. Rad. and Radioisot. Tokyo 1983). 264 R.Verbruggen J. J. R. Mertens and W. Vanryckeghem ref 31 p. 803. 265 J. Baer R. Harrison C. A. McAuliffe A. Zaki H. L. Sharma and A. G. Smith Znt. J. Appl. Radiat. Isot. 1985 36 181. 266 Yu. V. Norseev D. D. Nhan V. A. Khalkin N. Q Huan and L.Vasaros J. Radioanal. Nucl. Chem. 1985 94 185. 267 A. Harrison and L. Royle Int. J. Appl. Radiat. Isot. 1984 35 1005. 268 12th International Hot Atom Chemistry Symposium Balatofuered September 1984 Abstracts Central Research Inst. for Physics Hung. Acad. Sci. Budapest Hungary 1984. 269 S. Bulbulian ref. 45 p. 15. 270 K. Oohashi and N. Morikawa Radioisotopes (Tokyo) 1984 33 601. 271 K. Oohashi H. Takiguchi and N. Morikawa Radioisotopes (Tokyo) 1984 33 747. 272 B. S. M. Rao G. A. Brinkman and J. T. Veenboer Radiochim. Acta 1984,35 57. 273 K. Oohashi and N. Morikawa Radioisotopes (Tokyo) 1984 33 444. Radiochemistry 383 (PH, ASH, H2S and HCl) the effect of bond angle changes and the possible involvement of lone-pairs in the substitution reaction have been In the solid phase the extensive studies of the reactions of recoil tritium with adsorbed ethane (zeolite and silica gel) have continued275 and the state of tritium formed in neutron irradiated lithium fluoride has been investigated.276 The decay of a tritium atom in a doubly labelled molecule can confer reactivity on the resulting cation;277 two examples of the chemistry of such cations have been reported recently of butyl with benzene278 and of phenylium with Group 111.-The recoil chemistry of 208Tlproduced by the a-decay of 212Bi in tri(diethy1dithiocarbamate)bismuth and related complexes has been studied;280 inorganic thallic ions were conspicuous by their absence.Group 1V.-"C reacts with ethene to produce "C-allene either by C-H bond insertion or by direct attack on the double bond.Detailed investigation281 of this reaction has shown that 'hot' and 'D atoms react preferentially at the latter site but that less energetic atoms inserted into the C-H bond.'D atoms did not react with the C-H bond to produce labelled allene. The reactions of recoil "C with hydrogen nitrogen water and ammonia have been reviewed.282 A summary of recent progress in the chemistry of recoil silicon and germanium has been pub- li~hed.~~ The effects of y-decay of the '19"Sn isotope of tin have been studied by a detailed comparison284 of the Mossbauer spectra from a series of tin complexes which had been subject to known amounts of external y-irradiation and to '"*Sn decay. Group V.-The reactions of recoil 13N made by [12C(d,n)13N] with benzene or cyclohexane gave rise to many labelled products including hydrocyanic acid ammonia and cyano or amine derivatives of the starting materials.285 The occurrence of these products was rationalized as resulting from the intermediacy of labelled CN' or N2H' radicals.A novel way to study the gas-phase chemistry of nitronium ions has been reported;286 they are generated directly by the decay of 14C02. In their reaction with toluene much more ortho-nitrotoluene is produced than in conventional liquid-phase nitration; nitrobenzene is also formed. 32P-tris (alkyl or thioalkyl) phosphates can be prepared directly by the neutron irradiation of (or thi~l'~~)-carbon tetrachloride mixtures. The labelling results from the reaction of recoil phosphorus produced by C3'Cl(n (Y)~~P].274 M. Castiglioni and P. Volpe Radiochim. Acta 1983 34 165. 27s T. V. Tsetskhladze L. I. Cherkezishvili and N. Ya. Tsibakhashivili Zh. Fiz. Khim. 1984 58 1214. 276 Y. Aratono M. Nakashima M. Saeki and T. Tachikawa Radiochim. Acta 1984 37 101. 277 F. Cacace in re$ 93 p. 161. 278 V. D. Nefedov E. N. Sinotova and Yu. M. Arkhipov Vestn. Leningr. Univ. Fiz. Khim. 1983 16 109. 279 G. Perez and E. Possagno Znt. J. Appl. Radiat. Zsot. 1985 36 87. 280 P. Zhang H. @an Y. Wu X. Wang Y.Hiang and Y. Liu Radiochim. Acta 1983 34 169. 28 I R.A. Femeri A. P. Wolf and Y. N. Tang J. Am. Chem. SOC.,1983 105 5428. 282 T. Ido and R. Iwata in re$ 93 p. 417. 283 P. P. Gaspar Report No.ER/01713-136 D.O.E. Washington D.C. U.S.A. 1984. 284 Yu.Perfiliev M.I. Af'ansov and A. M. Babeshkin J. Radioanal. Nucl. Chem. 1985 93 29. "' Y. Sensui K. Tomursa and T. Matsuura Radiochim. Acta 1984 35 37. 286 V. D. Nefedov M. A. Toropova A. V. Vorontsov V. V. Avorin S. B. Rozenkov and A. S. Kanev Radiokhimiya 1984 26 417. 384 D. S. Urch Group VI.-The final valence state of recoil sulphur produced by neutron irradiation of chlorine,287 [35Cl(n,p)35S] has been shown to range from -2 to +6 in alkali halides288 and in mixed aluminium-iron( 111) chloride crystals.289 The fate of recoil selenium produced by an n,y reaction in phosphate-doped potassium selenate has been investigated.290 Studies have also been made to deter- mine the final valency of tellurium after the isomeric transition [*27mTe 127Te] has taken place291 in a wide variety of different solvents.Group VI1.-The primary yields of the reactions of recoil 18F with perfluoroethane are292 F-for-F 14% F-for-CF 0.7% and F-for-2F 1.9% but in the absence of stabilizing collisions many of the newly labelled molecules decompose (91YO 57% and 35% respectively). By measuring the yield of H18F from fluoroform in an otherwise wholly fluorinated medium it has been shown293 that recoil 18Fseems to abstract hydrogen only at near thermal energies. Apart from one report in which the reaction of recoil 34mCl (produced by 22 MeV proton or 12 MeV deuteron bombardment of 34S) with gaseous hydrogen sulphide was de~cribed'~ all other recently reported studies of the chemistry of recoil chlorine have been in condensed phases.Recoil 38Cl produced by the neutron irradiation of ,'Cl has been extensively investigated in mixtures of aldehydes or ketones or carboxylic acids with carbon tetra~hloride,~~~ in mixtures of chlorobenzene and carbon tetra~hloride,~~~ and in mixtures of aliphatic alcohols and chl~robenzene,~~~ in systems containing dichlorobenzene~,~~' and other substituted chloroaniline~,~~~ chlorobenzene~.~~~ In many cases the effect of adding scavenger molecules such as iodine was also studied and relative reactivities estimated by the method of Kontis and Urch. Phase change effects have been determined for a range of substituted chloroben~enes.~~~ The only inorganic system to be investigated was that based on K2[0s(Cl ~r)~] mixed crystals.301 Recoil bromine species are produced by many different nuclear reactions.One of the simplest is electron capture and both 76Br and 77Br are formed in this way from the corresponding krypton isotopes. The reactions of these nuclei with ben- zene302 and fluoroben~ene~~~ in the gas phase have given somewhat conflicting results concerning the charge state of the reactive species. With benzene it was concluded that the rate of charge neutralization exceeded that of hydrogen substitu- 287 D. S. Todorovsky and K. N. Konstadinov J. Radioanal. Nucl. Chem. 1985 88 97. 288 N. R. Das and P. Chattopadhyay J. Radioanal. Nucl. Chem 1984 84 185. 289 A. G. Maddock D. S. Todorovsky and K.Kostadinov Radiochim. Acta 1983 34 181. 290 R. Z. D. Fernandes M. F. de Jesus R. M. Machado and G. Duplatre Radiochim. Acta 1984 37 11. 29 1 S. I. Bondarevskij and S. A. Timofeev Radiokhimiya 1984 26 672. 292 C. A. Mathis R. Gurvis M. Knickelbein K. D. Knierim S. H. Mo and J. W. Root Int. J. Chem. Kinet. 1982 11 565. 293 M. B. Knickelbein Z. Xue and J. W. Root J. Phys. Chem. 1984 88 2017. 294 M. Pertessis-Keis Radiochim. Acta 1984 36 169. 295 N. Chandrasekhar R. N. Bhave and B. S. M.Rao J. Radioanal. Nucl. Chem. 1985,93,73. 296 S. S. Kontis and E. A. Gasparakis Radiochim. Acta 1984 36 103. 29' N. Chandrasekhar R. N. Bhave and B. S. M. Rao Radiochim. Acta 1984 36 163. 298 B. S. M. Rao G. A. Brinkman and J. T. Veenboer Radiochim. Acra 1984 35 61.299 A. S. Agrawal and B. S. M. Rao Radiochim Acta 1984 35 65. 300 V. G. Dedgaonkar S. Mitra and S. Waghmare J. Radioanal. Nucl. Chem. 1984 87 373. 301 H. Mueller and P. Obergfell ref:45 p. 18. 302 S. M. Moerlin M. J. Welch and A. P. Wolf Radiochim. Acta 1984 35 29. 303 H. Backhausen Report No. 1918 Juelich Nuclear Research Centre Juelich F.R.G. 1984. Radiochemistry 385 tion so that the reaction was due to bromine atoms but with fluorobenzene the addition of radical scavengers had no effect whilst pyridine which would neutralize bromine ions reduced yields to zero. These investigations have been extended to the liquid and solid states302 and to the determination of reaction mechanisms involving substituted benzenes as well.304 Both substitution and polymerization increase in the condensed phases.Activated bromine species can also be produced by the neutron irradiation of bromine itself. Both "Br and 'OrnBr are made directly and 82Br results from the decay of excited 82mBr. Trends in the yields of labelled products from the reaction of 'OmBr with mixtures of chlorobromomethanes and alkanes alcohols and aniline have been analysed by the Urch-Kontis method.305 The reactions of "Br (neutron capture) and "Br (isomeric transition) with methyl bromide under a wide range of physical conditions and also in different chemical environments have been studied.306 82Br-labelled 1-(3'-bromo-3'-deoxy-P-~-arabinofuranosyl)uraci1'~~ and (E)-5-(2-bromovinyl)-2'-deoxyuridine186 can both be prepared in small but useful yields by the direct neutron irradiation of the parent compounds.A detailed investigation of the final state of 82Br in mixed crystals of K20sBr6-K2SnC16 has enabled the processes leading to defects to be unravelled.307 A study of the reaction of recoil iodine ['271(n,y)12'1] with iodobenzene in the presence of molecular iodine tagged with 1311 has allowed different reactions to be identified and indicated that the (n y) reaction can lead to the rupture of the benzene ring.308 In a very different type of experiment it has been shown that recoil iodine 1231 from the decay of 123Xe can exchange directly with iodine in long chain iodo-fatty acids.239 Extensive annealing studies have been made to investigate the reactions of recoil 12'1 in solid iodate^^^-^" periodates?l1 and iodate-nitrate mixed crystals.312 Dissolution of irradiated potassium periodate showed313 that the oxidation state of the iodine is strongly pH dependent.Transition Metals (First Row).-Considerable interest continues to be shown in the fate of recoil 51Cr in solid chromates and chromium complexes. Thermal annealing studies of potassium chromate doped with trivalent "Cr have indicated314 that the radioactive atom is incorporated into chromate polymers and appears to undergo oxidation. On the other hand annealing of neutron-irradiated K3[Cr( NCS)6].4H20 has given evidence315 for 'ligand collection' by the recoil atom within the crystal lattice as the crystal is warmed up. Similar investigations have been reported316 for chromium(111) trifluoroacetylacetonate.Recoil studies with mixed complexes of the 304 S. M. Moerlin M. J. Welch and A. P. Wolf J. Am. Chem. Soc. 1983 105 5418. 305 A. S. Agrawal P. G. Reddy and B. S. M. Rao J. Radioanal. Nucl. Chem 1985,94 339. 306 L. R. Opelanio-Buencamino F. A. El-Amri W. M. Grauer and E. P. Rack Radiochim. Acta 1984,37 191. 307 H. Mueller P. Bekk and U. Bicheler Radiochim. Acta 1984 36 115. 308 T. A. H. Peacocke and G. N. Walton Radiochirn. Acra 1984 37 187. 309 R. B. Sharma A. Patnaik and S. P. Mishra J. Radioanal. Nucl. Chem. 1985 94 33. 310 S. P. Mishra A. Patnaik R. B. Sharma and D. P. Wagley Radiochirn. Acta 1983 34 189. 311 R. B. Sharma and S. P. Mishra J. Radioanal. Nucl. Chem 1985 93 103. 312 S.P. Mishra and R. B. Sharma Met. Miner. Rev. 1983 22 37. 313 R. B. Sharma and S. P. Mishra J. Radioanal. Nucl. Chem. 1984 87 117. 314 K. E. Collins J. C. de Andrade and C. H. Collins Radiochim. Acta 1984 35 71. 315 F. M. Lancas and C. H. Collins Radiochim. Acta 1984 35 77. 316 M. C. A. de Souza and C. H. Collins Abstracts 1st National Meeting Anal. Chem. Rio de Janeiro Brazil 1982 p. 83. 386 D. S. Urch types K3[(Cr Al or Fe)(C293q)3]317i318 have and K3[(Cr Al or Fe)(CN)6]3171319 shown a correlation between the chromium 'retention' and the initial chromium concentration. Neutron irradiation of potassium permanganate releases 56Mn into the lattice; the range of observed320 valence states has been rationalized thermodynamically.Similar treatment of sodium nitroprusside generates recoil iron the final states of which were studied321 both by thermal annealing and by electrophoresis. A non-recoil study of the 57Fe that results from the decay of 57C0 in cobalt(I1) sulphate has been made using Mossbauer Theories concerning the fate of recoil cobalt in crystal lattices have been reviewed323s324 and further experimental work has been reported. In studies of the behaviour of 6oCo made by the neutron irradiation of tris(acety1-acetonato)cobalt(111) in frozen organic solvents325 or adsorbed on silica use was made of the Mossbauer spectrum of the corresponding iron complex to deter- mine the initial state of dispersion of the compound. Recoil cobalt has also been studied in mixed crystals of K3[Co(CN),]-K3[(Fe or Cr)(CN)6].327 When recoil cobalt comes to rest in [CO(H~O),][COEDTA]~.~H,O there is the possibility that it might enter the cationic or the anionic complex; annealing studies have indicated328 the existence of thermal exchange reactions.These have been studied by annealing of cobalt complexes doped with ,OCo. Transition Metals (Second Row).-Neutron irradiation of molybdenum will produce recoil 99M0 and by subsequent p-decay recoil 99mTc. A preliminary analysis of the various labelled products that can be formed from molybdenum trioxi~ie~~~ and from ammonium m~lybdate~~l has been reported. Other recoil reactions of tech- netium that have been investigated include that of 95Tc activated by the isomeric transition from 95mT~ in the pertechnetate anion in a solution containing excess 99TcO;.Electron-transfer reactions are proposed332 to explain the formation of 95Tc0,. It has been observed333 that recoil rhodium atoms can react with air to produce a volatile oxide (possibly 99,100Rh03). Transition Metals (Third Row).-Annealing has been used to the chemistry of I8,Re produced by the neutron irradiation of '''Re in mixed crystals of &Re&,- 317 R. M. Mahfouz J. Radioanal. Nucl. Chem. 1984 87 143. 318 El-H. M. Diefallah J. Radioanal. Nucl. Chem. 1985 93 89. 319 El-H. M. Diefallah S. N. Basahl M. S. El-Meligy and R. M. Mahfouz Radiochim. Acta 1984 37 17. 320 N. P. Kosev Yad. Energ. 1983 19 60. 321 C. di Risio and R. 0. Marques J. Radioanal. Nucl.Chem. 1985 94 191. 322 T. Kobayashi Radiochim. Acta 1984 35 43. 323 M. I. Afanasov A. M. Babeshkin L. A. Kulikov and Yu. D. Perfiliev J. Radioanal. Nucl. Chem. 1985 93 37. 324 V. Ramshesh Natl. Acad. Sci. Lett. 1983 6 379. 325 Y. Sakai H. Nishioji and T. Tominaga Radiochim. Acta 1984 36 181. 326 H. Nishioji Y. Sakai and T. Tominaga J. Radioanal. Nucl. Chem. 1985 95 63. 327 El-H. M. Diefallah and A. 0. Baghlaf J. Radioanal. Nucl. Chem. 1985 94 109. 328 C. H. Collins and M. I. M. S. Bueno ref:45 p. 20. 329 G. Albarran C. Archundia and A. G. Maddock Radiochim. Acta 1984 35 183. 330 J. L. Iturbe ref 45 p. 17. 331 S. Bulbulian rej 45 p. 16. 332 M. Colin E. Ivanovici P. Lerch and A. G. Maddock Radiochim. Acta 1984 37 199. 333 V. P. Domanov and I.Zvara Radiokhimiya 1984 26 770. 334 H. Mueller Radiochim. Acta 1983 34. 173. Radiochemistry 387 KZSnC1,. At 50 “C some labelled hexabromorhenate is found whilst at higher temperatures mixed halogeno-complexes are formed. Recoil osmium iridium and platinum have all been found to react in air to produce volatile labelled The labelled compounds produced as a result of the neutron irradiation of diphenyl- mercury and dimethylmercury have been described.335 5 Chemical Effects of Nuclear Decay As well as the chemical reactions that can be initiated by the recoil energy given to an atom or ion as a result of decay which have been considered above many other reactions are possible caused by the passage of a,p or y rays through a sample. For the most part this is ‘radiation chemistry’ rather than radiochemistry and so only those aspects that impinge directly on the reactions discussed in previous sections will be considered here.Many general reviews have appeared concerning the effect that decay-induced decomposition can have upon radiopharma~euticals.~~~ These articles have dealt with all aspects of the problem detection of the levels of impurities (both radioactive and not) methods for their removal and the effect which they may have upon detecting systems if they are not removed.337 Technetium compounds have been investigated particularly thoroughly with many chromatographic methods being reported,338 for the removal of decay-induced impurities. Specific methods for the quality control of technetium radiopharmaceuticals have been described339 and the problems of long-term storage considered.340 6 Miscellaneous Uranium in the Sea.-The intense Japanese interest in the extraction of uranium from the sea continues; the current position has been reviewed341 and the chemical state of the uranium at various stages of the process discussed.342 The efficacy of many different types of adsorbant or chelating agents have been considered hydrated titania (‘titanic acid’!),343 a titanium-activated carbon c~mposite,~~ sulphonamide-335 R.Dzhingova K. Kostadinov and D. Todorovski God. Sojij. Uniu. Khim. Fak. 1978,72 11. 336 (a) S. I. Gomez de Castiglia A. H. Fraga de Suarez and A. E. A. Mitta Report No. 470,Comision Nacional de Energia Atomica Buenos Aires Argentina 1981;(6)T.Szarvas Izotopteckniku 1984,27 174;(c) M. Molter Nuklearmediziner 1984,7 37;(d)A. K. Thakur S. J. Listwak and D. Robard ref 14,p. 345;(e) M. Irie Y. Shishiba H. Yamada F. Kinoshita S. Iino H. Demura and Y. Miyachi ref 14,p. 513. 331 J. W.Haggith and P. H. Bartholomew Proceedings Hospital Physicists’ Assn. Conf. Report No. 38,ed. R. F. Mould London 1983,p. 125. 338 (a) V. Jovanovic T. Maskin J. Bzenic and N. Terzic Isotopenpraxis 1985,21 147;(b) N. H. Agha H. M. A. Karim and N.D. Dahir J. Radioanal. Nucl. Chem. 1985,90,3; (c) T.Mueller Eur. J. Nucl. Med. 1985,10,551; (d) B. A. Rhodes and D. Torvestad Calif. Patent 1 177 392/A 1984. 339 E. S. Verdera A. S. Leon and A. M. Robles ref 14,p. 540. 340 J.Zelnickova M. Starkova and Z. Horak re$ 205,p. 213. 341 (a) N.Ogata Proceedings Int. Conf:on Recouery Uranium from Seawater Atomic Energy SOC. Japan Tokyo Japan 1984,p. 187;(b) I. Tabushi and Y. Kobuke Mem. Fac. Eng. Kyoto Univ. 1984,46,51; (c) N.Ogata Nippon Kaisui Gakkai-Shi 1984,38 14. 342 N. Ogata Nippon Kaisui Gakkui-Shi 1984,38 111. 343 (a) T. Yamazaki Nippon Kaisui Gakkai-Shi 1984,38 116; (b) S. Senho Y. Oda and H. Konishi Nippon Kaisui Gakkui-Shi 1984,38 154 and 158. 344 (a) T. Hirotsu A. Fujii K. Sakane S. Katoh and K. Sugasaka Nippon Kaisui Gakkai-Shi 1983,37 159 and 290; (b) K. Ooi S. Katoh and K. Sugasaka Nippon Kaisui Gakkai-Shi 1984,37 352. 38% D. S. Urch type adsorb ant^,^^' polymers containing amidoxime groups,346 and liquid surfactant membranes containing organo-ph~sphates.~~~ The next stage is of course to remove the uranium from its sequestered site.This can be achieved by the use of anion exchange resins.348 Some such resins (AN-2F) have been to have the ability to adsorb heavy metal ions (including uranium) directly from sea-water. Extraction of Other Elements from Solution.-The use of fabrics and fibres coated with specific adsorbants as proposed for the extraction of uranium for the removal of many other radionucleides (e.g. 6oCo 90Sr 13"Ce etc.) from solution has been in~estigated.~~' Detection.-New techniques have been described351 for the intensification of faint autoradiographs made by 35S(although presumably not confined to that isotope) and for determining the detection efficiency of tritium-labelled compounds on paper chrornatograrn~.~~~ Calibration.-Details have been given353 for the preparation of standard samples of tritiated methane for the calibration of gas-phase proportional counters.Tech- niques have also been described354 for the standardization of 22Na solutions and the availability of a new range of standard sources has been announced.355 Positronium and Muonium-The chemistry of positronium has been reviewed356 and the structure of positronium halides in a polyacetylene matrix in~estigated.~'~ Heavier muons can form temporary liaisons with electrons and protons when they come to rest in matter. The chemistry of the 'muonic atoms' that result has been discussed for both positive358 and negative359 muons.345 M. Sakuragi K. Ichimura and Y. Suda Kogyo Gijutsuin Seni Kobunshi Zairyo Kenkyusho Kenkyu Hokoku 1984 140 29. 346 (a) K. Sakane T. Hirotsu N. Takagi S. Katoh and K. Sugasaka Shikoku Kogyo Gijutsu Shikenjo Hokoku 1982 14 107; (b) Y. Koide H. Takamoto K. Matsukawa and K. Yamada Bull. Chem. SOC. Japan 1983 56 3364; (c) S. Katoh K. Sugasaka K. Sakane N. Takai and H. Takahashi Shikoku Kogyo Gijutsu Shikenjo Hokoku 1983 15 1 and 8. 347 K. Akiba T. Kanno and T. Takahashi Tohoku Daigaku Senko Seiren Kenkyusho Zho 1984,40 1. 348 (a) T. Yamamoto H. Takase and F. Fukuoka Kogakuin Daigaku Kenkyu Hokoku 1984 56 71; (b) A. Sasaki Y. Echigo M. Yamao Y. Suematsu T. Ishikura T. Hirotsu S. Katoh and K. Sugasaka Nippon Kaisui Gakkui-Shi 1984 37 341.349 0.T. Krylov N. N. Zavadskaya P. D. Novikov B. V. Volostnykh and M. P. Nesterova Okeanologiya, , 1984 24 611. 350 M. P.Zverev A. N. Barash and G. L. Popova AN Uzbekskoj SSR Tashkent Inst. Yadernoj Fiziki 1983 p. 254. 35' A. Owunwanne Anal. Biochem. 1984 138 74. 352 B. K. Kudelin and Yu. L. Kaminskij Radiokhimiya 1984 26 219. 353 K. Kushitaf N. Takeuchi and K. Hoizumi Radioisotopes (Tokyo) 1985,34,1. 354 B. R. S. Simpson and B. R. Meyer Research Report No. 596 CSIR National Accelerator Centre Faure R.S.A. 1985. 355 L.Szokolyi and A. Szoerenyi Meres Koezl. 1985 26 39. 356 V. I. Gol'danskij and V. P. Shantarovich Zh. Vses. Khim. 0-va. D. I. Mendeleeva 1983 18 36. 357 E.Cartier F.Heinrich H. Kiess G. Wieners and M. Monkenbusch Helv.Phys. Acta 1985 57 760. 358 P. Burkhard H. Fischer E. Roduner W. Strub F. N. Gygax S. F. J. Cox D. Geeson and M. C. R. Symons SIN Newsl. 1985 17 52. 359 Y.Sakai T.Tominaga K. Ishida and K. Nagamine Radiochim. Acta 1984 36 173.

 

点击下载:  PDF (1474KB)



返 回