首页   按字顺浏览 期刊浏览 卷期浏览 Effects of native defects on carrier concentrations in heavily Si-doped and adjoining l...
Effects of native defects on carrier concentrations in heavily Si-doped and adjoining lightly doped GaAs layers

 

作者: Hiroshi Fushimi,   Masanori Shinohara,   Kazumi Wada,  

 

期刊: Journal of Applied Physics  (AIP Available online 1997)
卷期: Volume 81, issue 4  

页码: 1745-1751

 

ISSN:0021-8979

 

年代: 1997

 

DOI:10.1063/1.364030

 

出版商: AIP

 

数据来源: AIP

 

摘要:

Generation of native defects during growth of heavily Si-doped GaAs and their effects on carrier concentrations in heavily doped and adjoining lightly Si-doped GaAs layers are investigated. The mechanism of their intrusion from the heavily doped layer into the lightly doped layers is discussed. The behavior of the native defects during annealing after growth is also studied. As Si doping concentration increases, the concentration of triply ionized gallium vacancy (VGa3−), generated by a Frenkel-pair defect formation process, increases. The limit of free-carrier concentration in the heavily doped layers is caused by thisVGaand not by electron occupation of a highly localized state of the donor-related DX center.VGaalso causes carrier compensation in the adjoining underlayers. However, the carrier concentration in the adjoining overlayer grown on the heavily doped layer is not affected. We infer that drift is the predominant process forVGaflow into the lightly doped layers. This drift is caused by the electric field induced by a surface–Fermi-level pinning, mainly in an early growth stage of the heavily doped layer. On the other hand, the diffusion process ofVGafrom the heavily doped layer during growth is negligible. Therefore, the carrier concentration in the layers grown on the heavily doped layer is not affected. During annealing after growth theVGa, which is supersaturated in the lightly doped underlayer, disappears as the result of a first-order reaction, so the carrier concentration is recovered. These results not only suggest a carrier compensation mechanism, but are also useful in improving the characteristics of devices consisting of structures with heavily Si-doped GaAs layers. ©1997 American Institute of Physics.

 

点击下载:  PDF (136KB)



返 回