首页   按字顺浏览 期刊浏览 卷期浏览 Most probable magnetohydrodynamic tokamak and reversed field pinch equilibria
Most probable magnetohydrodynamic tokamak and reversed field pinch equilibria

 

作者: John Ambrosiano,   George Vahala,  

 

期刊: Physics of Fluids(00319171)  (AIP Available online 1981)
卷期: Volume 24, issue 12  

页码: 2253-2264

 

ISSN:0031-9171

 

年代: 1981

 

DOI:10.1063/1.863344

 

出版商: AIP

 

数据来源: AIP

 

摘要:

The statistical theory of Montgomery, Turner, and Vahala, which determines the most probable ideal magnetohydrodynamic equilibrium compatible with given information on only a few global parameters (e.g., energyE, magnetic helicityH, flux &Fgr;, currentI, ⋅⋅⋅) is extended and investigated for both the tokamak regime (in which experimentally &Fgr;≫&mgr;0aI, withabeing the plasma radius) and the reversed field pinch regime (&Fgr;≪&mgr;0aI). One obtains typical experimentally relevant profiles in the appropriate regimes. Most probable equilibria sequences are investigated as the energy/magnetic helicity ratio is decreased at fixed flux and current: In the tokamak regime (flux≫current) the diamagnetic toroidal fieldBzbecomes less diamagnetic and tends to a uniform field, while in the reversed field pinch regime (flux≪current), field reversal sets inBzwith the radial reversal position moving farther into the plasma and the eventual appearance of hollow pressure profiles. It appears that, in both regimes, the most probable equilibria are becoming more stable as &mgr;0aE/Hdecreases. Linearized analytic force‐free states can also be constructed for certain regimes of the global parameters together with their nonlinear quasi‐force‐free numerical counterparts.

 

点击下载:  PDF (937KB)



返 回