首页   按字顺浏览 期刊浏览 卷期浏览 Influence of Two-Dimensional Gas Phase Radiation on Downward Flame Spread
Influence of Two-Dimensional Gas Phase Radiation on Downward Flame Spread

 

作者: TZUNG-HSIEN LIN,   CHIUN-HSUN CHEN,  

 

期刊: Combustion Science and Technology  (Taylor Available online 1999)
卷期: Volume 141, issue 1-6  

页码: 83-106

 

ISSN:0010-2202

 

年代: 1999

 

DOI:10.1080/00102209908924183

 

出版商: Taylor & Francis Group

 

关键词: downward flame spread;gas phase radiation

 

数据来源: Taylor

 

摘要:

This work investigates how radiation heat transfer influences downward flame spread by presenting a gas phase radiation model, described by a two dimensional P-1 approximation method, to incorporate with the combustion model of Duh and Chen (1991). The parametric study is based on the variation of gravity, which changes the Damkohler number (Da) and radiation to conduction parameter (I/N∞) simultaneously. Comparing the results with the previous studies of Duh and Chen (199l) and Chen and Cheng (1994). which only considered the radiation effect in cross stream direction, the role of stream-wise radiation was identified. The stream-wise radiation contributes to reinforce the forward heat transfer rate subsequently increasing the flame spread rate. However, this model also provides more directional radiation loss than that of Chen and Cheng (I994) and, in doing so, draws more energy out from the flame to further reduce its strength. The results indicates that the effect of heat loss is greater than that of enhancing the upstream heat transfer since the flame spread rate in the present model is always lower than the one predicted by Duh and Chen (1991), Finally, a contour of the Planck mean absorption coefficient distribution is illustrated to demonstrate the effectiveness of gas radiation distribution. It reveals that the strongest radiation occurs near the pyrolyzing surface and the other significant one is in the plume region. A comparisons with available experimental data also given to evaluate the ability of predict in the present combustion model.

 

点击下载:  PDF (579KB)



返 回