首页   按字顺浏览 期刊浏览 卷期浏览 N-(2,4,7-trinitrofluorenylidene)anilines—new electron transport materials in posi...
N-(2,4,7-trinitrofluorenylidene)anilines—new electron transport materials in positive charge electrophotography

 

作者: Masaki Matsui,  

 

期刊: Journal of Materials Chemistry  (RSC Available online 1996)
卷期: Volume 6, issue 7  

页码: 1113-1118

 

ISSN:0959-9428

 

年代: 1996

 

DOI:10.1039/JM9960601113

 

出版商: RSC

 

数据来源: RSC

 

摘要:

~~~ ~~~~~ ~ ~ N-(2,4,7=Trinitrofluorenylidene)anilines-new electron transport materials in positive charge electrophotography Masaki Matsui,"' Katsuyoshi Shibata," Hiroshige MuramatsuO and Hiroyuki Nakazumib 'Department of Chemistry, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1 1, Japan bDepartment of Applied Materials Science, College of Engineering, University of Osaka Prefecture, Sakai, Osaka 593, Japan New electron transport materials, N-( 2,4,7-trinitrofluorenylidene)-2,6-dialkylanilines,show excellent properties in positive charge electrophotography. Single-crystal X-ray diffraction analyses of two of these compounds are reported. The high solubility of N-(2,4,7-trinitrofluorenylidene)-2,6-diethylanilinescould be mainly attributed to the loss of overlap between intermolecular fluorene rings due to the bulkiness of the ethyl groups.The generation of harmful ozone during the photocopying process has been reported.' Although positive charge electro- photography, in which ozone generation is much less, can solve this problem, little is known about electron transport materials used in dual type organic photoconductors (OPCs). The properties required for electron transport materials are a stable reversible redox process, good solubility in organic solvents, high compatibility with a polymer matrix and high electron affinity. 2,4,7-Trinitrofl~orenone,~diphenoq~inones,~ butyl 9-dicyanomethylenefluorene-4-carboxylate,44H-thiopy-ran l,l-dioxides,' dicyanomethylenefluorenes,6 4-butoxycar-bonylfluoren-9-ylidenemalononitrile,7 anthraquinone and anthrone derivatives,* and azulenesg can be used as electron transport materials. In our previous report, we reported the synthesis of N-(nitrofluorenylidene) 2-substituted anilines and evaluated them as electron transport materials in positive charge electropho- tography.It was found that (i) bulky 2-substituents on the anilino moiety remarkably increased the solubility in organic solvents and compatibility with polycarbonate (PC), (ii) tri- nitro derivatives were the most soluble among di-, tri-, and tetra-nitrofluorenylidene derivatives, (iii) drift mobility of N-(2,4,7-trinitrofluorenylidene)-2-methylanilinewas found to be 5 x cm2 V-' s-', (iv) N-(2,4,7-trinitrofluorenylidene)-2-isopropylaniline showed the best features as an electron trans- port material, and (v) N-( 2,4,7-trinitrofluorenylidene)-2-alkyl-anilines were negative in the Ames test." In our continuing study on electron transport materials in positive charge electro- photography, new N-(2,4,7-trinitrofluorenylidene)di- and tri- substituted anilines have been prepared and evaluated as electron transport materials in OPC.Results and discussion Scheme 1 shows the synthesis of N-( 2,4,7-trinitrofluorenylid-ene)anilines 1-20. They were prepared by the condensation of R3 2,4,7-trinitrofluoren-9-one with substituted anilines in the pres- ence of zinc chloride in moderate to good yields. The solubility and compatibility with polycarbonate of 1-20 are indicated in Table 1.2,6-Disubstituted anilines were more soluble than the 2-monosubstituted ones (13 and 16). For the 2,6-substituents the solubility was in the order of CH3<CzH5<CH(CH3)2(7,11,16, respectively). This suggests that the more the bulky the substituent, the higher the solu- bility. Introduction of chloro, bromo and nitro groups into the para-position of the anilino moiety lowered the solubility (6, 8, 11-14). 2,4,6-Triisopropyl derivative 18 was the most soluble. Highly soluble derivatives showed high compatibility with PC. A solubility of more than 1O.Og per 100ml in chloroform was required to prepare the photoconductor at 25 "C. To investigate the reason for the high solubility and compati- bility of 2,6-dialkyl derivatives, X-ray crystallographic analyses were performed.ORTEP drawings and packing diagrams of 1 and 11 are shown in Figs. 1 and 2, respectively. Two crystallo- graphically independent molecular units were present in com- pound 11. Dihedral angles between the nitro groups or the benzene ring and the fluorene ring in compounds 1 and 11 are shown in Table 2. In both the derivatives, only the E-forms were obtained. The fluorene rings were planar. The two nitro groups at the 2- and 7-positions [C(11) and C(4) in Figs. 1 and 2, and C(34) and C(27) in Fig. 2, respectively] lie almost on the same plane, while the nitro group at the 4-position [C(9) in Figs. 1 and 2, and C(32) in Fig. 2) was not conjugated with the fluorene ring.No significant difference in dihedral angles between the anilino group and fluorene ring in 1(85.8") and 11 (78.6') was observed. However, a significant difference in interplanar spacing between adjacent fluorene rings in .1 and 11 was noticed. The interplanar spacing dn 11 was 6.46 A, which was much greater than that of 1 (3.40 A). The two ethyl groups at the 2,6-positions on the anilino moiety of 11 can act 1-20 Scheme 1 J. Muter. Chem., 1996, 6(7), 1113-1118 1113 Table 1 Solubility and compatibility with PC of N-(2,4,7-trinitrofluorenylidene)anilines comp R' R2 R3 R4 R5 solubility"/ g loom1 compatibility with PC 1 H H H H 2 89 low 2 3 c1 H H c1 H H H H 3 36 2 84 low low 4 H H c1 H 2 14 low 5 H Br H H 166 low 6 7 8 H H H H Br NO2 H H H H CH3 CH3 112 19 59 5 14 low high low 9 H Br H H 8 95 medium 10 H Br H Br 8 11 medium 11 12 13 14 15 16 17 18 19 20 H H H H H H NO2 H H H H Br H Br Br H H H H (CH3)2CH H H H H H H H H H c(CH313 C2H5 C2H5 H H Br (CH3)2CH (CH3 )2CH (CH3)2CHH H 37 15 22 37 18 90 14 42 8 49 61 86 13405 18808 43 28 31 23 high high high high high high high high high high ' " Measured in CHC1, at 25 "C TNF =2 85 g 100ml as a spacer to inhibit intermolecular interactions between adjacent fluorene rings This may also reflect the lower melting point of 11 (159-160 "C) than 1 (227-229 "C) It is concluded that the high solubility of 11 can be mainly attributed to the loss of intermolecular overlap between the fluorene planes due to the bulkiness of the 2,6-diethyl groups in the anilino moiety Fig 3 shows the construction of a dual type OPC consisting of a charge generation layer (CGL) and a charge transport layer (CTL) The photoinduced discharge curve of an OPC for a test cycle during the photocopying process is depicted in Fig 4 The electrical potential of the photoconductor surface reaches a fixed potential by corona discharge (6 kV), followed by dark decay (2 s) Upon irradiation (780 nm, 1 pW cm 2), the poten- tial decreases The properties of the OPCs are evaluated using the following parameters (1) charge acceptance (V,/V),(11) dark decay ratio (DDR) [(V,-V,)/V,] x loo%, (iii) sensitivity (Elj2) [tl/2 s x light intensity (pJ ~m-~)]and (iv) residual potential (V,/V) For an OPC of practical use, V, should be in the range a 600-800 V DDR >90%, <0 50 p.J cm and V, <50 V Highly compatible N-(2,4,7-trinitrofluorenylidene)anilines with PC were evaluated as electron transport materials in electrophotography The results are listed in Table 3 For the 2-isopropyl derivatives 13 and 14, the introduction of a bromine atom into the anilino moiety was disadvantageous to the properties A similar result was observed for 2,6-diethyl deriva- tives 11 and 12 Interestingly, 2- and 2,6-isopropyl derivatives 13 and 16 showed better properties than the most soluble 2,4,6-triisopropyl derivative 18 It is concluded that only 2,6- dialkyl derivatives 7, 11 and 16 show as good features as 2- isopropyl derivative 13 Experimenta1 Instruments Melting points were measured with a Yanagimoto MP-S2 micro melting point apparatus NMR spectra (CDC1, solution) were recorded on JEOL 270-GX and a-400 spectrometers using a tetramethylsilane as an internal standard J Values are in Hz Mass spectra (70 eV, EI) were measured with Shimadzu QP-1000 and 9020-DF spectrometers UV spectra were taken on a Shimadzu UV-160A spectrometer Fig.1 (a) Packing diagram of tnnitrofluorenylidene aniline 1 Column Synthesis of N-(2,4,7-Trinitrofluorenylidene)anilines1-20 view along the b axis Interplanar spacing of adjacent fluorene nngs between two symmetry operations (x,y,z) and (x,l +y,z) (b) ORTEP To the appropriate aniline (10mmol) were added 2,4,7-trinitro- view of tnnitrofluorenylidene aniline 1 fluorenone (5 mmol) and zinc chloride (0 1 g) and the mixture 1114 J Muter Chern, 1996, 6(7), 1113-1118 Fig.2 (u) Packing diagram of N-(2,4,7-trinitrofluorenylidine)-2,6-diethylaniline11. Column view along the c axis. Interplanar spacing of adjacent fluorene rings between two symmetry operations (x,y,z)and (~$1 +z). (b) ORTEP view of 11 showing the two independent molecules in the unit cell. Table 2 Dihedral angles (") between the nitro groups or the benzene ring and the fluorene ring" in compounds 1and 11 1 11 O(l)-N(2)-0(2) 13.5 O(l)-N(2)-0(2) 0(3)-N(3)-0(4) 48.5 0(3)-N(3)-0(4) 0(5)-N(4)-0(6) 10.3 0(5)-N(4)-0(6) benzene ringb 85.8 benzene ringb 15.1 0(7)-N(6)-N(8) 14.7 27.9 0(9)-N(7)-0( 10) 21.1 9.4 O(l1)-N(8)-O(l2) 4.0 78.6 benzene ringb 78.4 a C1 -C2- C3-C4- C5 -C6- C7- C8 -C9- C10- C11 -C12- C13 and C24- C25-C26 -C27- C28 -C29- C30- C3 1 -C32- C33 - C34- C35-C36.C 14- C 15 -C 16- C17 -C18-C19 and C37- C38 -C39- C40- C41- C42. J. Muter. Chem., 1996, 6(7), 1113-1118 1115 CTL II substrate (Al) Fig. 3 Construction of an OPC 8 I charge ; darkdecay ; exposure I I vR II 0 2.0 3.5 t/s Fig. 4 Photoinduced discharge curve of an OPC during a test cycle Table 3 Evaluation of N-(2,4,7-trinitrofluorenylidene)anilinesas elec- tron transport materials 7 643 93 0.30 49 11 603 93 0.30 42 12 774 98 0.44 125 13 608 93 0.30 41 14 701 96 0.40 71 15 662 95 0.38 53 16 621 97 0.38 41 17 690 94 0.50 118 18 722 97 0.56 176 19 868 99 0.42 120 20 678 96 0.78 220 was heated at 150-170°C.After the reaction was complete, the product was extracted with chloroform, purified by column chromatography, and crystallised from chloroform-hexane. Physical and spectral data are shown below. N-( 2,4,7-Trinitrofluorenylidene)aniline 1. Yield 73YO;mp 227-229 "C (lit.," 224-225 "C). N-( 2,4,7-Trinitrofluorenylidene)-3-chloro-2-methylaniline2. Yield 92%; mp 206-208 "C (Found: C, 54.4; H, 2.3; N, 12.7. C20HllCIN406requires C, 54.75; H, 2.53; N, 12.77%); 6, 2.24 (3 H, s), 6.75 (1 H, d, J7.8), 7.22-7.30 (1 H, m), 7.42 (1 H, d, J7.8), 7.73 (1 H, d, J2.0), 8.32 (1 H, d, J8.8), 8.40(1 H, dd, J 8.8 and 2.0), 8.98 (1 H, d, J 2.0), 9.14 (1 H, d, J 2.0); m/z 438 (M', 100%); &,,(CHCI,)/nm 281 (&/dmW3 mol-'cm-' 3 1 000), 330 ( 15000). N-(2,4,7-Trinitrofluorenylidene)-~chloro-2methy~an~ine3.Yield 58%; mp 217-218°C (Found: C, 54.6; H, 2.4; N, 12.7. C20HllC1N406requires C, 54.75; H, 2.53; N, 12.77%); 6, 2.18 1116 J. Mater. Chem., 1996,6(7), 1113-1118 (3 H, s), 6.77 (1 H, d, J 7.7), 7.32 (1 H, d, J 7.7), 7.42 (1 H, s), 7.81 (1 H, d, J2.2), 8.33 (1 H, d, J8.6), 8.41 (1 H, dd, J8.6 and1.8),8.97(1H,d,J2.2),9.12(1H,d,J1.8);m/z438(M', 100%); &,(CHCl,)/nm 280 (~/dm-, mol-' cm-' 30000), 328 (15 000). N-( 2,4,7-Trinitrofluorenylidene)-5-chloro-2-methylaniline 4. Yield 34%; mp 222-223 "C (Found: C, 54.4; H, 2.5; N, 12.9.C20HllClN406requires C, 54.75; H, 2.53; N, 12.77%); 6, 2.17 (3 H, s), 6.88 (1 H, d, J 1.8), 7.30 (1 H, d, J 1.8), 7.33 (1 H, s), 7.69 (1 H, d, J2.0), 8.33 (1 H, d, J8.8), 8.42 (1 H, dd, J8.8 and 2.0), 8.98 (1 H, d, J 2.0), 9.12 (1 H, d, J 2.0); m/z 438 (M', 100%); A,,(CHCl,)/nm 281 (&/dm-, mol-' cm-' 32000), 330 (15 000). N-( 2,4,7-Trinitrofluorenylidene)-4-bromo-2-methylaniline5. Yield 30%; mp 231-233 "C (Found: C, 50.1; H, 2.4; N, 11.6. C20HllBrN406 requires C, 49.71; H, 2.29; N, 11.59%); 6, 2.21 (3 H, s), 6.72 (1 H, d, J 8.3), 7.47 (1 H, dd, J 8.3 and 1.8), 7.58 (1H,d,J1.8),7.80(1H,d,J2.1),8.33(1H,d,J8.6),8.41(1 H, dd, J8.6 and 2.1), 8.98 (1 H, d, J2.1), 9.12 (1 H, d, J2.1); m/z 484 (M'+2, 88%), 482 (M+, 100); &aX(CHC13)/nm281 (&/dm-, mol-' cm-' 31 OOO), 333 (15 000).N-(2,4,7-Trinitrofluorenylidene)-2-methyl-~nitroani~ine6. Yield 43%; mp 253-255°C (Found: C, 53.3; H, 2.3; N, 15.5. C20H11N508requires C, 53.46; H, 2.47; N, 15.59%); 6, 2.24 (3 H, s), 6.99 (1 H, d, J8.4), 7.65 (1 H, s), 8.26 (1 H, d, J8.4), 8.34 (1 H, s), 8.36-8.45 (2 H, m), 9.01 (1 H, s), 9.12 (1 H, s); m/z 449 (M', 100%); A,,,(CHCl,)/nm 289 (&/dmP3 mol-I cm-I 39 OOO), 328 (26 000). N-(2,4,7-Trinitrofluorenylidene)-2,6-dimethylaniline 7. Yield 40%; mp 192-194°C (Found: C, 60.5; H, 3.2; N, 13.2. C2,H14N406requires c, 60.29; H, 3.37; N, 13.39%);6, 2.03 (6 H, s), 7.21-7.26 (3 H, m), 7.46 (1 H, d, J 1.8), 8.31 (1 H, d, J 8.6), 8.39 (1 H, dd, J 8.6 and 1.8), 8.98 (1 H, d, J 1.8), 9.21 (1 H, d, J 1.8); m/z 418 (M', 100%); &,(CHCl,)/nm 278 (~/dm-~mol-' cm-' 30000), 327 (16000). N-( 2,4,7-Trinitrofluorenylidene)-4-bromo-2,6-dimethy~aniline 8.Yield 61%; mp 234-236°C (Found: C, 50.6; H, 2.8; N, 11.5. C21H13BrN406requires C, 50.72; H, 2.63; N, 11.27%); 6, 2.01 (6 H, s), 7.39 (2 H, s), 7.58 (1 H, d, J2.2), 8.33 (1 H, d, J8.8), 8.42(1H,dd,J8.8and2.2),8.99(1H,d,J2.2),9.18(1H,d, J 2.2);m/z 498 (M' +2,91%), 496 (M', 100); A,,(CHCl,)/nm 279 (&/dm-, mol-' cm-' 32000), 331 (17000). N-(2,4,7-Trinitrofluorenylidene)-4-bromo-2-(trifluoromethy1)-aniline 9. Yield 45%; mp 207-210°C (Found: C, 45.1; H, 1.5; N, 10.6. CzoH8BrF,N406 requires C, 44.72; H, 1.50;N, 10.43%); 6.89 (1 H, d, J 8.3), 7.59 (1 H, s), 7.82 (1 H, d, J 8.3), 8.02 (1 H, s), 8.36 (1 H, d, J 8.6), 8.44 (1 H, d, J 8.6), 9.00 (1 H, s), 9.07 (1 H, s); m/z 538 (M'+2,90"/0), 537 (27), 536 (M', 100); A,,,(CHCl,)/nm 282 (&/dm-, mol-' cm-' 36000), 326 (18 000).N-(2,4,7-Trinitrofluorenylidene)-2,4-dibromo-6-(trifluoro-methy1)aniline 10.Yield 14%; mp 224-228 "C (Found: C, 39.2; H, 1.3; N, 9.0. C20H,Br2F,N406 requires C, 38.99; H, 1.15; N, 9.09%); 6H 7.54 (1 H, s), 7.98 (1 H, s), 8.12 (1 H, s), 8.35-8.59 (2 H, m), 9.03 (1 H, s), 9.13 (1 H, s); m/z 618 (M'+4, 58%), 616 (M' +2, loo), 614 (M', 56); &,,(CHCl,)/nrn 293 (~/dm-, mol-'cm-' 19000), 326 (16000). N-( 2,4,7-Trinitrofluorenylidene)-2,6-diethylaniline 1 1. Yield 42%; mp 159-160°C (Found C, 61.6; H, 4.1; N, 12.4. Cz3H18N406requires C, 61.88; H, 4.06; N, 12.55%); 6, 1.07 (6 H, t, J 7.3), 2.35 (4 H, q, J 7.3), 7.26-7.29 (3 H, m), 7.42 (1 H, d, J 2.1), 8.31 (1 H, d, J 8.6), 8.37 (1 H, dd, J 8.6 and 2.1), 8.98 (1 H, d, J 2.1), 9.20 (1 H, d, J 2.1); m/z 446 (M+, 100%); R,,(CHCl,)/nm 279 (&/dmp3 mol-' cm-' 30000), 327 (16000).N-( 2,4,7-Trinitrofluorenylidene)-4-bromo-2,6diethylaniline 12. Yield 61%; mp 196-198 "C (Found: C, 52.8; H, 3.0; N, 10.5. C23Hl,BrN406 requires C, 52.59; H, 3.26; N, 10.67%); 6H 1.08 (6 H, t, J 7.3), 2.22-2.43 (4 H, m), 7.26 (2 H, s), 7.54 (1 H, d, J 1.8), 8.33 (1 H, d, J 8.9), 8.41 (1 H, dd, J 8.9 and 1.8), 8.99 (1 H, d, J 1.8), 9.17 (1 H, d, J 1.8); m/z 526 (M++2, loo%), 525 (29), 524 (M', 98); R,,(CHCl,)/nm 280 (&/dm-, mol-' cm-' 33OW), 330 (17000).N-( 2,4,7-Trinitrofluorenylidene)-2-isopropylaniline 13. Yield 87%; mp 184-186 "C." N-( 2,4,7-Trinitrofluorenylidene)-4-bromo-2-isopropylan~ine 14.Yield 92%; mp 185-187 "C (Found: C, 51.9; H, 2.7; N, 10.8. C2,Hl5BrN4O6 requires C, 51.68; H, 2.96; N, 10.96%); & 1.18 (6 H, d, J 6.7), 3.02-3.09 (1 H, m), 6.69 (1 H, d, J 7.9), 7.43 (1 H, dd, J7.9 and 1.8), 7.63 (1 H, d, J 1.8), 7.82 (1 H, d, J 1.8), 8.33 (1 H, d, J8.5), 8.41 (1 H, dd, J8.5 and 1.8), 8.98 (1 H, d, J 1.8), 9.11 (1 H, d, J 1.8); m/z 512 (M++2, 94%), 511 (27), 510 (M+, lW), 495 (32); &,,(CHCl,)/nm 281 (~/dm-, mol-' cm-' 31 OW), 330 (17000). N-( 2,4,7-Trinitrofluorenylidene)-2,4aibromo~-isopropyl-aniline 15. Yield 70%; mp 115-117°C (Found: C, 44.5; H, 2.1; N, 9.6.C22H14Br2N406requires C, 44.77; H, 2.39; N, 9.49%); 8H 1.25 (6 H, d, J 6.6), 2.83-2.91 (1 H, m), 7.57 (1 H, d, J 1.8)7 7.63 (1 H, d, J 1.8), 7.75 (1 H, d, J 1.8), 8.35 (1 H, d, J8.4), 8.44 (1 H, dd, J 8.4 and 1.8), 9.00 (1 H, d, J 1.8), 9.16 (1 H, d, J 1.8); m/z 592 (M'+4, 52%), 590 (M++2, loo), 588 (M', 48), 575 (21); A,,(CHCl,)/nm 283 (~/dm-~mol-' cm-' 26000), 328 (12000). N-(2,4,7-Trinitrofluorenylidene)-2,6-diisopropy~aniline16. Yield 85%; mp 149-152°C (Found: C, 63.3; H, 4.8; N, 11.9. C,,H2,N4O6 requires C, 63.29; H, 4.67; N, 11.81Y0);dH 0.94 (6 H, d, J 6.6), 1.19 (6 H, d, J 6.6), 2.65-2.74 (2 H, m), 7.30-7.36 (3 H, m), 7.41 (1 H, d, J 1.9), 8.31 (1 H, d, J 8.6), 8.37 (1 H, dd, J 8.6 and 1.9), 9.01 (1 H, d, J 1.9), 9.21 (1 H, d, J 1.9); m/z 474 (M+, loo%), 459 (82); &,,(CHC13)/nm 279 (&/dmF3 mol-' cm-' 30000), 333 (16000).N-(2,4,7-Trinitrofluorenylidene)-2,6-diisopropyl-3-nitro-aniline 17.Yield 92%; mp 238-240 "C (Found: C, 57.6; H, 3.9; N, 13.2. C25H,,N50s requires C, 57.80; H, 4.07; N, 13.48%); 6, 1.01 (3 H, d, J6.9), 1.04 (3 H, d, J6.9), 1.15 (3 H, d, J6.9), 1.22 (3 H, d, J 6.9), 2.65 (2 H, heptet, J 6.9), 3.17 (1 H, heptet, J 6.9), 7.45 (2 H, s), 7.57 (1 H, s), 8.37 (1 H, d, J 8.7), 8.86 (1 H, d, J 8.7), 9.03 (1 H, s), 9.16 (1 H, s); W/Z 519 (M+, 34%), 502 (24), 219 (100); ;1,,,(CHCl,)/nm 281 (&/dm-, mol-' cm-' 36000), 331 (17 100). N-( 2,4,7-Trinitrofluorenylidene)-2,4,6-triisopropylaniline 18. Yield 75%; mp 166-167°C (Found: C, 65.1; H, 5.2; N, 11.1.C2&&406 requires C, 65.11; H, 5.46; N, 10.85%); 6, 0.92 (6 H, d, J 6.8), 1.19 (6 H, d, J6.8), 1.37 (6 H, d, J6.8), 2.68 (2 H, heptet, J 6.8), 3.01 (1 H, heptet, J 6.8), 7.17 (2 H, s), 7.30 (1H,s),8.29(lH,d,J8.8),8.35(1H,d,J8.8),9.02(1H,s), 9.21 (1 H, s); m/z 516 (M', 87%), 501 (loo), 216 (47); R,,,(CHCl,)/nm 278 (&/dm-, mol-' cm-' 34000), 335 (17000). N-( 2,4,7-Trinitrofluorenylidene)-2,5-di-tertbutylaniline19. Yield 70%; mp 165-167°C (Found: C, 64.3; H, 4.9; N, 11.4. C,,H2,N4O6 requires C, 64.53; H, 5.22; N, 11.15Y0);BH 1.22 (9 H, s), 1.24 (9 H, s), 6.72 (1 H, d, J1.8), 7.37 (1 H, dd, J8.6 and 1.8), 7.54(1 H, d, J8.6), 7.73 (1 H,d, J 1.8), 8.31 (1 H,d, J8.6), 8.37 (1 H, dd, J8.6 and 2.4), 8.97 (1 H, d, J 1.8), 9.11 (1 H, d, J 2.4); m/z 502 (M', 61%), 487 (100); L,,(CHCl,)/nm 281 (&/dm-, mol-' cm-' 29000), 334 (18000).N-(2,4,7-Trinitrofluorenylidene)-2-[2,4-bis (trifluoromet hy1)-2,3,3,4,5,5,5-heptafluoropentyl]aniline 20. Yield 30%; mp 155157°C (Found: C, 43.2; H, 1.5; N, 7.6. C26HllF13N406 requires C, 43.23; H, 1.53; N, 7.76%); aH3.80 (2 H, s), 7.00-7.02 (lH,m),7.42-7.43(3H,m),8.13(1H,d,J2.0),8.34(1H,d, J 8.7), 8.42 (1 H, dd, J 8.7 and 2.1), 8.98 (1 H, d, J 2.0), 9.06 (1 H, d, J 2.1); m/z 722 (M+,9%), 553 (24), 403 (42), 357 (45), 312 (24), 311 (loo), 265 (44), 264 (33); L,,(CHCl,)/nm 324 (&/dm-, mol-' cm-' 14 loo), 452 (3340). X-Ray crystallographic analysis Crystals were obtained by recrystallisation from a saturated ethanol solution at room temperature.All data were collected at 23°C on a Rigaku AFC-5R diffractometer Yith graphite- monochromated Mo-Ka radiation (A=0.71069 A) in the range 6" <28 <55" of 01-28 scan mode. The three standard reflections were remeasured periodically and showed no significant dis- crepancy. Reflections having F >3a(F,) were used in the structure refinement. The structures were solved by direct method using MITHRIL', in TEXAN (TEXRAY Structure Analysis Package, 1985) crystallographic software, and refined by the full-matrix least-squares. The 16 and 12 non-hydrogen atoms in 1 and 11 respectively were assigned anisotropic thermal parameters, and others were assigned isotropic thermal parameters. There were so few reflections that it was not meaningful to refine more than a limited number of anisotropic thermal parameters.The high R-factor for compound 11 is responsible for the limited number of anisotropic thermal parameters. All the hydrogen atoms for 1 and 11 were placed in calculated positions. Crystallographic data for 1 and 11 are summarized in Table 4. Selected bond length and bond angles are shown in Table 5. Tables of atomic coordinates, anisotropic and isotropic thermal parameters, full list of bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). For details of the deposition scheme, see 'Instructions for Authors', J. Muter. Chem., 1996, Issue 1. Table 4 Crystallographic data for 1 and 11 1 11 formula ClJ 1ON406 C23HMN4O6 mol.wt. 390.32 446.42 crysal system monoclinic triclinic crystal sizelmm 0.9 x 0.28 x 0.03 0._4x 0.23 x 0.15 spac: group P21la P1 a/+ 12.986( 6) 12.881(6) bl+ 6.627( 7) 16.470( 7) CIA 20.747( 7) 10.455( 4) aldegrees 90.0 98.45 (4) Bldegrees 101.86(4) 90.93( 4) yldegrees 90.0 105.62( 3) VIA3 1747( 2) 2109(2)z 4 4" DJg cmP3 1.484 1.406 p/cm -1.06 0.97 no. of total reflections 3871 8278 no. of unique reflections 3684 7702 no. of observed reflections 1129 1448 [Z >3.0a(Z)] absorption correction type none none no. of refined parameters 197 325 k in w =l/(a2F, +kFO2) 0.01 0.01 final R 0.078 0.107 final R, 0.061 0.098 density range in final Amaple A-3 -0.38, 0.45 -0.39, 0.46 final shiftlerror ratio 0.01 0.09 " Two crystallographically independent molecular units were present.J. Muter. Chem., 1996,6(7), 1113-1118 1117 Table 5 Selected bond lengths (A)and bond angles (") for 1 and 11 Bond lengths (A) 1 11 C( 11-W) C( 1)-C( 13) C(l)-N(l)N( 1)-C( 14) C(4)-N(2) C(9)--N(3)C( 11)-N(4) 1 47( 1) 149( 1) 1286(9)1 44( 1) 1 49( 1) 1 53( 1) 1 48( 1) C( 1)-C(2) C( 1)-C( 13) C(l)-N(l)N( 1)-C( 14) C(4)-N(2) C(9)-N(3)C( 1 1 )-N( 4) 150(3) 157(3) 131(3)149(3) 144(3) 145(3) 146(3) C(24)-C(25) C(24)-C(36) C(24)-N(5) N(5)-C(37) C(27)-N(6) C(32)-N(7) C(34)-N(8) 1 49( 3) 152( 3) 1 30(3) 148(3) 145(3) 145(3) 143(3) Bond angles (") 1 11 C(2)-C( 1)-C( 13) 106 6(7) C(2)-C( 1)-C( 13) 108(2) C( 25)- C( 24)- C(36) 108 (2) C( 1)-N( 1)-C( 14) 117 5( 8) C( 1)-N( 1)-C( 14) 120(2) C( 24)-N( 5)- C( 37) 122( 2) Any request to the CCDC for this material should quote the 1984 (Chem Abstr, 1986, 104, 99467h), (c) K F Doessel, full literature citation and the reference number 1 145/1 H J Schlosser and W Wiedemann, Ger Offen, DE 3 135 460, March 17,1983 (Chem Abstr ,1983,99,30719~),(d) H Hasegawa, H Taniguchi and T Igawa, US Patent, US 4 296 190, October 20, Preparation of an OPC 1981 (Chem Abstr , 1982, 96, 26849r), (e)Y Kato, UK Pat Appl, The aluminized polyester film was coated with a thin charge GB 2 070 268, September 3,1981 (Chem Abstr ,l982,96,113481h),(f)T Nakazawa, K Nagahashi and T Aizawa, Ger Offen, 2 832 generation layer (CGL) of metal-free phthalocyanine using 859, February 15, 1979 (Chem Abstr, 1979, 91, 30543a),the drawbar technique N-(2,4,7-Tnnitrofluorenylidene)aniline (8)K Nagahashi and T Aizawa, Ger Offen, 2 801 914, July 27, (50g) was mixed with a chloroform-chlorobenzene (7 3) 1978(Chem Abstr , l979,90,14651h), (h)A M Horgan, US Patent solution (45 ml) of PC (5 0g) and stirred for 1 h A thin film US 4 047 949, September 13,1977 (Chem Abstr ,l978,88,81833r), (I) S Takeuchi and M Maezawa, Jpn Kokaz Tokkyo Koho, JP 74 of the resultant mixture was coated on the CGL and the resultant film was dried lo 20 548, May 25, 1974 (Chem Abstr, 1975, 82, 105207u), (1)T Furuyama, K Mori, H Komoto and K Oomura, Jpn Kokaz Tokkyo Koho, JP 73 40 850, June 15,1973 (Chem Abstr ,1974,80,Evaluation of N-( 2,4,7-Trinitrofluorenylidene)anilines as 9102u), (k) H Helmut, US Patent, US 3 287 114-3 287 123, electron transport materials in positive charge electro- November 22,1966 (Chem Abstr , 1967,66,66746~-66755~) photography 3 M Yamaguchi, H Tanaka and M Yokoyama, Denshi Shaszn Gakkar Shr, 1991,30,266 The products were evaluated as descnbed in our previous 4 R 0 Loutfy, B S Ong and J Tadros, J Imaging Scr ,1985,29,69 report lo 5 M R Detty, J A Sinicropi, J R Cowdery and R H Young, US Patent, US 5 300 385, Apnl 5, 1994 (Chem Abstr, 1994, 121, The authors are grateful to Messrs Jyuich Hirose, Tatsushi 46586r) Kobayashi and Takeshi Matsumoto of Tomoegawa Seishi Co , 6 D E Bugner, T M Kung and L J Row, US Patent, US 4 997 737, March 5,1991 (Chem Abstr ,1991,115,123848h)Ltd for evaluation of N-(2,4,7-trinitrofluorenylidene)anilines 7 D K Murti, P M Kazmaier, G DiPaola-Baranyi, C K Hsiao as electron transport matenals in positive charge electro- and B S Ong, J Phys D Appl Phys, 1987,20,1606 photography 8 B S Ong, D K Murti and B Keoshkenan, US Patent, US 4 609 602, September 2,1986 (Chem Abstr ,1986,105,235823~) 9 Sumitomochemical Co ,Ltd ,Jpn Kokai Tokkyo Koho, JP 6 055 345, March 30,1985 (Chem Abstr ,1985,103,45785~)References 10 M Matsui, K Fukuyasu, K Shibata and H Muramatsu, J Chem 1 Ozone News, 1992,20,15 Soc ,Perkzn Trans 2,1993,1107 2 (a)H Nomori and K Matsuura, Jpn Kokai Tokkyo Koho, JP 02 11 M E Taylor and T L Fletcher, J Org Chem ,1956,21,523 207 261, February 7, 1989 (Chem Abstr, 1991, 114, 218024e), 12 C J Gilmore and J Mithnl, J Appl Crystallogr ,1984,17,42 (b) S Kajiura, M Maeda, K Mizushima, M Sugiuchi and Y Nakajima, Jpn Kokaz Tokkyo Koho, JP 60 165 654, February 9, Paper 5/07229H, Received 2nd November 1995 1118 J Muter Chern, 1996,6(7), 1113-1118

 

点击下载:  PDF (697KB)



返 回