首页   按字顺浏览 期刊浏览 卷期浏览 Inhibition of Hypoxia-Induced Apoptosis by Modulation of Retinoblastoma Protein–D...
Inhibition of Hypoxia-Induced Apoptosis by Modulation of Retinoblastoma Protein–Dependent Signaling in Cardiomyocytes

 

作者: Ludger Hauck,   Georg Hansmann,   Rainer Dietz,   Rüdiger von Harsdorf,  

 

期刊: Circulation Research: Journal of the American Heart Association  (OVID Available online 2002)
卷期: Volume 91, issue 9  

页码: 782-789

 

ISSN:0009-7330

 

年代: 2002

 

出版商: OVID

 

关键词: apoptosis;hypoxia;cell cycle;signaling

 

数据来源: OVID

 

摘要:

Abstract—Apoptotic cell death is an important mode of cell loss contributing to heart dysfunction. To analyze the importance of the E2F-dependent regulation of gene transcription in cardiomyocyte apoptosis, the function of cell cycle factors impinging on the retinoblastoma protein (pRb)/E2F pathway was investigated. In isolated neonatal ventricular myocytes, apoptotic cell death induced by hypoxia (deferoxamine, 100 &mgr;mol/L) specifically activated cyclin-dependent kinases (cdks) 2 and 3. Apoptotic cell death was inhibited by ectopic expression of cdk inhibitors p21CIPand p27KIP1but not p16INK4. In addition, apoptosis was also abrogated by forced expression of kinase dead mutant proteins of cdk2/3 but not of cdk4/6. Introduction of cdk inhibitors or dominant-negative cdk2/3 blocked pRb hyperphosphorylation and abrogated E2F-dependent gene transcription, including that of the E2F-responsive genes of proapoptotic caspase 3 and caspase 7. Moreover, introduction of constitutively active pRb and transcriptionally inert mutant E2F1/DP1 efficiently protected cardiomyocytes from apoptosis. In conclusion, these data demonstrate that cdk-specific inactivation of pRb and the subsequent activation of E2F-dependent gene transcription are required for cardiomyocyte apoptosis.

 

点击下载:  PDF (405KB)



返 回