首页   按字顺浏览 期刊浏览 卷期浏览 Magnetic buoyancy force acting on bubbles in nonconducting and diamagnetic fluids under...
Magnetic buoyancy force acting on bubbles in nonconducting and diamagnetic fluids under microgravity

 

作者: Nobuko I. Wakayama,  

 

期刊: Journal of Applied Physics  (AIP Available online 1997)
卷期: Volume 81, issue 7  

页码: 2980-2984

 

ISSN:0021-8979

 

年代: 1997

 

DOI:10.1063/1.364330

 

出版商: AIP

 

数据来源: AIP

 

摘要:

The magnetic buoyancy force acting on a bubble in a one-dimensional magnetic field can be represented asF=(&khgr;G−&khgr;L)∫H(dH/dx)dVolB,where&khgr;Gand&khgr;Lare the volume magnetic susceptibilities of the gas and liquid, respectively, andHis the magnetic field strength. Since|&khgr;L|≫|&khgr;G|and most liquids are diamagnetic, this expression indicates that the magnetic buoyancy forces act in the direction of increasing magnetic field strength. Because the magnetic buoyancy force in a diamagnetic fluid is small, the motion of bubbles under normal gravity is difficult to study, but microgravity offers the possibility of detailed observations. Using a compact permanent magnet under microgravity conditions,N2bubbles in pure water (0.01 dyne s/cm2)and in a 69:31 glycerol/water mixture (0.21 dyne s/cm2)were found to move in the direction of increasingH, and to be held stationary at the point of maximumH. The motion of the bubbles was also simulated with a theoretical model and was found to agree with measurements made under microgravity conditions. These results indicate that magnetic buoyancy can be used to control bubble motion. Since most fluids are diamagnetic, magnetic buoyancy can be used to control bubbles in many fluidic devices used in space applications.©1997 American Institute of Physics.

 

点击下载:  PDF (2263KB)



返 回