首页   按字顺浏览 期刊浏览 卷期浏览 Low-Temperature Coupling of Methane
Low-Temperature Coupling of Methane

 

作者: LÁSZLÓ GUCZI,   RUTGERA. VAN SANTEN,   K.V. SARMA,  

 

期刊: Catalysis Reviews  (Taylor Available online 1996)
卷期: Volume 38, issue 2  

页码: 249-296

 

ISSN:0161-4940

 

年代: 1996

 

DOI:10.1080/01614949608006459

 

出版商: Taylor & Francis Group

 

数据来源: Taylor

 

摘要:

Methane is the main component of natural gas and its utilization amounts to ca. 1.7 × 109tons of oil equivalent per year [1]. Since the present reserve of methane is located in remote places, its transportation is a major problem. Methane coupling to form C2+hydrocarbons is, therefore, of a primary importance because before transportation methane should be converted into hydrocarbons with higher boiling points, such as ethane, propane, etc. The catalytic conversion of methane can be carried out in several ways which have excellently been reviewed in Refs. 1 and 2. Basically, three routes exist: (i) the indirect route in which methane is first converted into syngas in presence of water (steam reforming), CO2(carbon dioxide reforming), or oxygen (partial oxidation) and the resultant syngas can be utilized in the traditional way; (ii) direct coupling in the presence of oxygen (oxidative coupling of methane, OCM) or hydrogen (two-step polymerization); and (iii) direct conversion in the presence of oxygen to oxygenates (CH3OH, HCOH), in the presence of Cl2, HCI to methane chlorides, in the presence of ammonia to HCN, etc.

 

点击下载:  PDF (2935KB)



返 回