首页   按字顺浏览 期刊浏览 卷期浏览 Chapter 4. Aliphatic and alicyclic chemistry
Chapter 4. Aliphatic and alicyclic chemistry

 

作者: P. Quayle,  

 

期刊: Annual Reports Section "B" (Organic Chemistry)  (RSC Available online 1997)
卷期: Volume 93, issue 1  

页码: 69-118

 

ISSN:0069-3030

 

年代: 1997

 

DOI:10.1039/oc093069

 

出版商: RSC

 

数据来源: RSC

 

摘要:

4 Aliphatic and alicyclic chemistry By PETER QUAYLE Department of Chemistry University of Manchester Manchester M13 9PL UK 1 Introduction This year saw the passing of an icon of contemporary organic chemistry. It is fitting therefore that a short personal account of the development of the Birch reduction should have appeared.1 As pointed out by the author application of the Birch reduction to heterocyclic systems has received scant attention but has been the subject of a timely review.2 World-wide interest in the chemistry of fullerenes,3 buckybowls4 and enediynes5 continues unabated. Applications of combinatorial6 and solid-phase techniques7 are now well established and find uses in many diverse areas of synthesis ranging from medicinal chemistry to catalyst design.8 A resurgence in interest in carbohydrate chemistry is manifested in the appearance of seminal articles by Danishefsky9a and Fraser-Reid9b on the chemistry of unsaturated sugars.An extensive review by Boons10a on oligosaccharide assembly and articles concerned with the synthesis of inhibitors of carbohydrate-processing enzymes10b and glycosphingolipid biosynthesis11a all attest to a growing awareness in the synthetic community of this much neglected area of natural product chemistry.11b Multifarious aspects of bioorganic chemistry continue to be the focus of much attention.12 From the parochial viewpoint of the synthetic chemist the practical use of catalytic antibodies for the catalysis of a variety of synthetic transformations is now a real possibility.12a Enzymemediated transformations,13 amino acid chemistry,14 reactions in aqueous media15 and higher order cycloaddition reactions16 have again come under scrutiny.The synthesis and chemistry of organofluorine compounds have enjoyed something of a renaissance of late,17a certain aspects of which may have dramatic consequences on the ecosystem as a whole.17b The literature concerned with organometallic-based18 transformations including controlled methods for the polymerisation of olefins,18 continues to expand exponentially pride of place in this area continues to be the burgeoning use of palladium-mediated19 transformations whilst organo-titanium,20 - zirconium,21 -samarium,22 -ruthenium23 and -zinc24 reagents continue to gain importance. The realisation that these can be used in ‘tandem’ or cascade25 reactions can greatly simplify approaches to a variety of structurally complex molecules and presumably these reagents will be the focus of further attention in the future.The development of tandem reactions in general is currently much in vogue a definitive appraisal of much of this chemistry can be found in a compilation of articles edited by Wender.26 The use of free radicals in organic synthesis27 has been extensively re- Royal Society of Chemistry–Annual Reports–Book B 69 appraised this year including a compilation par excellence by Giese et al.28 which is a gold-mine of information. The underlying chemical principles associated with ‘molecular recognition’,29 self replication30 and self assembly31 phenomena continue to attract academic interest and practical applications of functionalised supramolecular assemblies32 are now on the horizon.It should not be forgotten that many of the advances in these areas are themselves associated with the continued development of advanced analytical tools e.g. electrospray mass spectrometry33 and X-ray crystallography.34 O O O N S O R OH HO 1a epothilone A (R = H) 1b epothilone B (R = CH3) OMe H N S H H 2 OBz H OAc O O AcO OH HO O BzNH Ph O OH 3 The subtlety of molecular recognition in vivo is highlighted this year by the isolation35 a of epothilones A 1a and B 1b which exhibit cytotoxic activity towards mouse fibroblasts and in vitro activity against breast and colon cell lines. It is indeed ironic that relatively uncomplex natural products such as 1 and curacin35b 2 have the same biological activity and mode of action as more complex structures such as Taxol 3 whilst there is no apparent structural homology between the two compounds.Furthermore it is rather poignant that Danishefsky36 reported the total synthesis of 1 within six months of the report of its structure! Some would question the merits of funding research programmes directed towards the synthesis of newly isolated natural products such as prymnesin-237 4 or maitotoxin38 5. However it is only by attempting such synthetic endeavours that we realise the inadequacies of the synthetic methodology to 70 Peter Quayle O O O O O O O O O Cl Me HO NHR HO OH O O OH Cl O O O HO OH HO OH OH OH OH OH OH OH OH O O OH OH OH Cl OH OH Me O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Me Me OH HO H H H H H H Me Me Me H H Me H Me H Me H H OH H H OH HO H OH H H H H HO NaO3SO H H OH H H H H HO Me OH Me OSO3Na HO Me OH H OH OH H Me H Me H HO HO OH H H H H HO H H H HO H OH HO H H OH H Me OH H Me H H H HO Me Me H H H H H Me Me Me OH OH OH A B C D E F G H I J K L M N 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 91 5¢ 1¢ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A¢ B¢ C¢ D¢ E¢ F¢ 142 140 164 135 130 125 120 115 110 105 100 155 95 90 85 80 150 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 1 143 144 5 4 145 71 Aliphatic and alicyclic chemistry O O O O O HO OH HO OH HO OH HO NHAc O HO O O O O O OH OH HO HO HO (CH2)12CH3 N H (CH2)14CH3 O OH H3C HO OH OH 6 O O HO HO OH 7 HN CO2H N NH O Me O Me O HN HN HN NH Me O HO2C O O Me Me OMe Me O 8 O Me Me O OH OH O Me OH O O OH OH Me O Me OH O OR Me Me O Me OMe HO Me Me OH MeO R OR1 9 swinholide A R = R1 = Me O O Me Me HN N O Me Me Me N O (+)-paraherquamide B 10 H Me 72 Peter Quayle O N O O O R O N O O O R Ph i–iii I N RAM H O iv v H2N O [ref.45( a)] [ref. 47( a)] [ref. 47( b)] O O Br + ZnBr vi vii O O R cat. R + [ref. 48] PCy3 Ru PCy3 Cl Cl cat. = Ph S OSiMe3 R1 R + R3CHO + R2NH2 viii ix HO R3 NHR2 R1 [ref. 50] Scheme 1 Reagents and conditions i LDA (2 equiv.) THF 0 °C; ii PhCH 2 Br (2 equiv.); iii NH 4 Cl (aq.); iv Bu 3 SnPh ultrasound 40 W Pd0; v trifluoroacetic acid (TFA); vi PdII THF room temp. 18 h; vii MeONa MeOH 70 °C; viii Sc(OTf) 3 (10 mol%); ix LiBH 4 . 73 Aliphatic and alicyclic chemistry O OTBS S S O O HO H CH3 H OH H H H HO H [ref. 51] steps N OH HO H HO (–)-rosmarinecine O RO O O2N O OG* + [ref. 52] Et H OH H 55% (1:1 mixture of isomers) [ref.54] [ref. 56] i ii I N X Y Ac Pd0 X N Ac Y Et (continued) 74 Peter Quayle O RO A O Br O OR O H A 70–80% A = NTs C(CO2Me)2 O O O SePh O Pd0 iii 65% O O O H H H H H [ref. 57] [ref. 58] [ref. 62] X Cr(CO)3 X R R1 32–87% iv v Scheme 2 Reagents and conditions i 0.6 equiv. Et 2 AlCl 3% Ti(OPr*) 4 ; ii O 2 ; iii Bu 3 SnH AIBN heat; iv RC–– – CH; v R@C–– – CH. 75 Aliphatic and alicyclic chemistry S C7H15 OBn OMe OMe + SiMe3 C7H15 OBn OMe –e– (ref. 64) 53% (ref. 65) OMe OMe OH OBn OAc H OAc O MeO OBn O –e– 68% Scheme 3 hand and this realisation provides the impetus for the development of more selective and economic synthetic transformations.23b In terms of total synthesis a number of elegant reports have appeared this year including the synthesis of the Mbr-1 antigen 6,39 macrolactin A 7,40 microcystin-LA 8,41 swinholide A 9,42 Taxol 143 and paraherquamide B 10.44 2 Aliphatic chemistry General A major growth area in recent years has been the interest in solid-phase organic synthesis.There are a myriad examples this year dealing with applications of this technique a timely review7 provides a comprehensive guide to those reactions which have succumbed to this methodological onslaught and perhaps more importantly an indication of those reactions which have not been attempted on solid support. Examples of the more recent and potentially general applications include aldol,45 iterative aldol,46 Suzuki47a and palladium-mediated coupling reactions of organozincs 47b ring-closure metathesis reactions,48 combinatorial approaches to chiral phosphine ligand synthesis49 and Mannich-type reactions,50 Scheme 1.The current interest in developing ‘cleaner’ more e¶cient processes has resulted in the report of a number of tandem or cascade reaction sequences. The basic notion behind such reactions of course is not new and dates back to Robinson’s tropinone synthesis of 1917. However what is astonishing is the degree of sophistication which can now be brought to bear in terms of the timing of individual bond-forming reactions and the complexity of the intermediates which can now be incorporated into such sequences. A number of representative examples including a classical polyene cyclisation51 [using optically pure starting materials via Sharpless asymmetric di- 76 Peter Quayle Scheme 4 Reagents and conditions i Tf 2 O pyridine; ii AgOTf; iii HNBn 2 LiBF 4 CH 3 CN 62%; iv Et 2 NSF 3 THF room temp.94%; v LIP–MCPBA. hydroxylation (AD) chemistry] tandem [4]3]–[3]2] cycloadditions of nitroalkenes 52 alkylation–homoaldol reactions,53 titanium-catalysed cascades of unsaturated alanes,54 enzyme-initiated oxidation–Diels–Alder reactions,55 palladiumcatalysed cascade reactions,56,57 radical cascades58–60 and Michael–Dieckmann sequences 61 and multiple metal-mediated cycloaddition reactions,62 Scheme 2. In a similar vein preparative electrochemical reactions have been regarded by most syn- 77 Aliphatic and alicyclic chemistry O OTBS OTf H H + O Li PhSO2 OBn O OTBS SO2Ph O OBn H H 98% RO H SiPh3 O i (ref. 71) [ref. 71( a )] RO SiPh3 O Li CHO RO O SiPh3 OH steps O N O O S 52% W-lamp (500 W) H O H H SPyr (ref.72) O OH O 75% overall yield Scheme 5 Reagents and conditions i BunLi THF. thetic chemists with a fair degree of scepticism. The recent report of a very simple electrochemical reactor63 should engender further investigations into this technique as such processes can be high yielding easy to perform and again can a§ord rapid access to quite complex structures,64,65 Scheme 3. Oxidation Epoxides are well recognised as being valuable synthetic intermediates,66–68 Scheme 4 a situation which has been enhanced considerably since the development of the Sharpless–Katsuki reaction. In related areas Katsuki69a has reported that Mn–salen complexes e§ect highly enantioselective epoxidation of enol derivatives whilst Bhakuni69b has demonstrated that liposomised m-chloroperbenzoic acid (MCPBA) e§ects highly enantioselective epoxidation of functionalised olefins Scheme 4.The synthetic utility of oxiranyl anions is becoming more widespread70,71 as is the chemistry of oxiranyl radicals,72 Scheme 5. The synthetic chemistry of endo-peroxides derived from cyclic dienes is not well developed in areas other than the reduction of the O–O 78 Peter Quayle O O i 74% OBu OH + OH OBu (ref. 73) ascaridole 9 1 11 Scheme 6 Reagents and conditions i BunLi THF,[78 °C. bond. In an interesting development Little73 has demonstrated that peroxides such as 11 undergo facile reactions with reactive organometallics to a§ord synthetically versatile mono-alkylated allylic diols Scheme 6. Dimethyl dioxirane (DMDO) and its derivatives continue to find application as selective oxidising agents,74,75 as does methylrhenium trioxide (MTO),76 Scheme 7.Of note is Yang’s77 report of the first enantioselective epoxidation of trans-olefins which utilises the C 2 -symmetric reagent 12 Scheme 7. The use of a silicon residue as a masked hydroxy group continues to find applications78 and has been reviewed,79 whilst recent methodological improvements by Fleming80 will further expand the scope of this procedure Scheme 8. The finer mechanistic subtleties81 of the Sharpless asymmetric dihydroxylation reaction continue to be unravelled. Irrespective of these controversies synthetic applications82 continue to be reported as illustrated in Scheme 9. In contrast to the accepted paradigm for dihydroxylation reactions it was reported that the hindered olefin 13 underwent dihydroxylation (in the presence of toluene-p-sulfonamide) to a§ord the diol 14 with p-facial selectivity opposite to that expected for such reactions,83 Scheme 9.Further reports from the Sharpless group have demonstrated the viability of catalytic aminohydroxylation84a and diamination84b reactions Scheme 9. Other useful oxidation reactions reported this year include the conversion of allenes into a-hydroxy ketones,85 the formation of quinols from phenols,86 and the aerobic oxidation of alkanes in the presence of copper salts.87 Functional group preparations The preparation of bis- and tris-ketenes,88 the use of Weinreb’s amide on solid support for the synthesis of ketones,89 and radical carbonylation reactions have been described this year.90 The direct acylation of olefins with carbon monoxide at ambient temperature in the presence of ‘waterless’ zeolites such as H-ZSM-5 has been observed spectroscopically and has many industrial applications if its e¶ciency can be optimised 91 Scheme 10.Novel ketone amination,92 lanthanide-catalysed Mannich reactions 93 radical-promoted oximations94 and alkene aziridination95 sequences have also appeared. The use of the Mitsunobu96 reaction for the synthesis of amines from alcohols under mild conditions will doubtless find many synthetic applications as will direct allylic amination97 and azidonation,98 Scheme 11. The Wittig reaction has been reviewed:99 new synthetic applications include the olefination of lactones100 and control of double bond stereochemistry by remote polar functional groups.101 Functionalised alkenes are available from the reaction of electron deficient alkenes with nucleophilic carbenes102a,b or by novel radical-mediated 79 Aliphatic and alicyclic chemistry O O O OH i 99% AcO H ii 62% H O O O AcO O N Cr(CO)5 SPh O N Cr(CO)5 S+ iii 64% O– Ph Ph Ph Ph Ph O 92% (75% ee) iv O O O O O Br Br 12 catalyst = [ref.74( a)] [ref. 74( b)] [ref. 76] H Scheme 7 Reagents and conditions i dimethyldioxirane (DMDO) CH 2 Cl 2 0 °C; ii DMDO acetone,CH 2 Cl 2 0 °C; iii MTO,CH 2 Cl 2 MeOH,H 2 O 2 ; iv Oxone catalyst NaHCO 3 CH 3 CN H 2 O. 80 Peter Quayle Et SiPh2 OH OH OH Et 87% (ref. 78) i–iii O Ph2Si iv v HO (ref. 80) (I)-lavendulol 2 steps Scheme 8 Reagents and conditions i I`(collidine) PF 6 ~ CH 2 Cl 2 ; ii Bu 3 SnH–Et 3 B hexane; iii H 2 O 2 KF KHCO 3 ; iv HCl KF MeOH; v H 2 O 2 KHCO 3 KF.13 Scheme 9 Reagents and conditions i AD-mix-b MeSO 2 NH 2 H 2 O 2 ButOH; ii (DHQD) 2 PYR K 2 OsO 2 (OH) 4 Fe3` p-TolSO 2 NH 2 K 2 CO 3 ; iii (DHQD) 2 ·PHAL TsNClNa; iv ArN––Se––NAr. 81 Aliphatic and alicyclic chemistry Scheme 10 Reagents and conditions i MeSiCl 3 ; ii 180 °C; iii dicyclohexylcarbodiimide hydroxybenzotriazole; iv base E`; v R@M; vi Bu 3 SnH CO (95–100 atm) AIBN 80 °C; vii CO zeolite H-ZSM-5. reactions which do not rely upon organotin hydrides for initiation,103 Scheme 12. Yamamoto has developed a ‘catalytic’ Shapiro reaction which requires substoichiometric quantities (0.3 equiv.) of bases such as LDA or LiTMP. A formal synthesis of (])-a-cuparenone nicely demonstrates the utility of this improved procedure 104 Scheme 13. In a new development Fuchs has reported that ethynyl and vinyl trifluoromethyl sulfones undergo direct (regioselective) C–H insertion reactions under thermal or photolytic conditions generating the corresponding alkenes or acetylenes in good overall yields.105a,b Mechanistic investigations showed that these reactions proceeded via free radical pathways,105c Scheme 14.Bromoalkenes are versatile intermediates whose preparation is sometimes problematical. Reports this year provide simple solutions to the synthesis of a-haloenones106 and the (Z)-1- bromoalk-1-enes,107 Scheme 15. The synthesis of ethers and oxygen heterocycles has been addressed by a number of workers. Again the mild conditions associated with the Mitsunobu reaction have been used to good e§ect in the synthesis of a number of oxygen heterocycles.108 Cationic palladium complexes have been found to be e§ective for the promotion of hetero-Diels–Alder reactions between relatively unactivated dienes with aldehydes.109 The stereoselective introduction of glycosidic linkages continues to challenge the synthetic chemist.10a Two novel approaches to this problem110,111 are outlined in Scheme 16.Organometallic-based transformations are again much in evidence this year. As suggested last year,112 olefin metathesis reactions could have almost universal application now that well characterised readily accessible and functionally tolerant catalysts have been described.113 A few representative examples which hopefully indicate the potential scope of this reaction are shown in Scheme 17.114–123 Future developments in this area may well include a kinetic resolution strategy for asymmetric ring closure metathesis a theme which at present is at an embryonic stage of development.124 82 Peter Quayle O OBn BnO OBn Br OBn OSiMe3 i O NH CF3 O 55% (ref.92) O OBn BnO OBn OBn ii N H3C OBn (ref. 94) OH NC PBu3 + NTs 2 iii iv NH 2 76% (ref. 96) ArNO2 + CO + cat. NHAr + CO2 (ref. 97) N N R R cat. = Ru3(CO)12 + (R = H Me OMe Cl) Scheme 11 Reagents and conditions i (salen)Mn(N) (CF 3 CO) 2 O pyridine CH 2 Cl 2 [78 °C; ii PhSO 2 (CH 3 )C––NOBu Me 3 SnSnMe 3 hv; iii TsNH 2 PhH room temp. 24 h; iv Na` Naphth~ THF,[30 °C; v (PhIO)n TMSN 3 CH 2 Cl 2 ,[30 °C. O O O O O O H O O O O O H CO2Me 90% i (ref. 100) O OTBDPS HN SO2 Cl OTHP ii iii OTBDPS HN SO2 Cl OTHP CO2Me (ref. 101) 'single isomer' O O CO2Me OTHP O O 65% iv–vi O O N MeO OMe OMe OMe THPO O O O [ref.102( b)] Scheme 12 Reagents and conditions i Ph 3 P–– CHCO 2 Me PhMe 140 °C; ii LiN(SiMe 3 ) 2 HO 2 C(CH 2 ) 4 P`Ph 3 Br~; iii CH 2 N 2 Et 2 O; iv LiOH H 2 O; v DPPA Et 3 N; vi 2,2-dimethoxy-5,5-dimethyl-2,5-dihydro-1,3,4-oxadiazole heat; vii AIBN. PhMe heat. 84 Peter Quayle p-Tol CH3 O N Ph H H2N + p-Tol CH3 N N Ph + CH3 p-Tol N N Ph i 86% i 84% p-Tol CH3 CH3 p-Tol O CH3 CH3 CH3 p-Tol (ref. 104) (+)-a-cuparenone Scheme 13 Reagents and conditions i LDA (0.1 equiv.) Et 2 O. R SO2 CF3 + O CH3 O CH3 R i (major) ~ 90% [ref. 105( a)] SO2CF3 Ph + O Ph O 65% ii [ref. 105( b)] Scheme 14 Reagents and conditions i heat; ii AIBN heat. Palladium-catalysed coupling reactions continue to be used extensively,125–138 Scheme 18. Significant advances this year include the synthesis of oxygen heterocycles via sp2–X insertion reactions,139,140 and definitive mechanistic studies into Heck,141,142 amination143 and cine substitution144 reactions Scheme 19.The use of trifluoromethanesulfonates (triflates) in transition metal-catalysed coupling reactions is now well established,145 but problems may arise in the preparation of the triflates themselves. Netscher has presented a detailed study of such reactions and has shown 85 Aliphatic and alicyclic chemistry Scheme 15 Reagents and conditions i Oxone NaBr H 2 O CCl 4 ; ii Bu 3 SnH Pd(PPh 3 ) 4 . OH OH OBn OBn BnO BnO O OBn OBn BnO BnO i (ref. 108) 91% O OR RO RO O S O O CH3 H + O S O O O BnO OBn (ref. 110) O O O O BnO OBn ii BnO BnO O OBn O Si Osugar BnO BnO S Ph O O OBn OH BnO BnO Osugar iii (ref.111) 42–82% overall Scheme 16 Reagents and conditions i NCCH––PBu 3 (1.5 equiv.) PhH 100 °C; ii Raney Ni PhH heat; iii 2,6-di-tert-butylpyridine Tf 2 O Et 2 O–CH 2 Cl 2 . 86 Peter Quayle N BnO BnO O OMe O OBn N BnO BnO O OBn i 70% Ru Ph Ph PCy3 Cl Cl PCy3 catalyst A OMe MeO O O i OMe O O 94% MeO (ref. 114) (ref. 115) O H OTBS CH3 O O O H H O O O H H CH3 OTBS H 36% i (ref. 119) Scheme 17 Reagents and conditions i catalyst A (5% w/w) PhMe 110 °C; ii catalyst A (6 mol%) CH 2 Cl 2 room temp.; iii Cp 2 Ti––CH 2 THF 25 °C. that when the alcohol or phenol is hindered high yields of alternative products such as sulfinate esters can be obtained hindered bases such as 2,6-lutidine and DIPPA are preferred in these problem cases,146 Scheme 20. The beneficial e§ect of adding catalytic quantities of copper salts to Stille coupling reactions has been utilised by Nicolaou147 in the synthesis of bisglycals.The use of stoichiometric148 amounts of copper salts as a replacement for palladium in Stille couplings and copper-mediated intramolecular coupling of bis-stannanes are useful variations on this chemistry and fuel the mechanistic debate concerning these reactions,149 Scheme 21. Cuprates150 and highly coordinated zincates151 have been found to act as very selective metallating agents. Copper-catalysed enantioselective conjugate addition reactions of dialkyl zincs152 have also been reported albeit with moderates ees. These reports are of particular interest as the organozinc reagents themselves can be prepared in the presence of electrophilic functional groups which is not necessarily the case with other nucleophilic metal systems.The development of new ligands for asymmetric conjugate reactions of cuprates has again been the focus of much inter- 87 Aliphatic and alicyclic chemistry OMe OMe OTf O TBS O OMe OMe O TBS i 82% Bu3Sn n-C6H13 SO2CF3 H Ph n-C6H13 SO2CF3 H ii Ph I + 91% (ref. 125) (ref. 127) O HO NH SnBu3 O O O HO HN O O HN O OH O (±)-alisamycin OH O NH Br + O iii 64% (ref. 128) O Scheme 18 Reagents and conditions i Pd0; ii Pd0 80 °C PhH; iii Pd0 DMF–THF. est.153 The mechanism of cuprate additions to ynoates154 and the role of TMS iodide155 in the conjugate addition of alkylcopper reagents to enones have again been the subject of some scrutiny the intermediacy of Cu–p-complexes was proposed in both cases. In a definitive study Bertz156 has developed a new class of organocuprates which incorporate b-silicon substituents in the non-transferable ligand.These reagents have greater thermal stability than conventional cuprates yet exhibit enhanced reactivity towards enones in conjugate addition reactions Scheme 22. The Nozaki–Hiyama–Kishi reaction has found extensive application in organic synthesis a position which will doubtless be further maintained by the development of a cycle which is catalytic in chromium,157 Scheme 23. A variety of cobalt- and iron-catalysed coupling reactions have appeared this year which are also of interest due to their chemoselectivity158 or ability to couple with unreactive functionalities such as vinyl chlorides,159 Scheme 24. 88 Peter Quayle Br CH3 HO O H Me 73% i (ref.139) Me3Sn Ph + ArPd X Ph Ar (ref. 144) [Pd] Ph Ar ? Scheme 19 Reagents and conditions i Pd(OAc) 2 Tol-BINAP K 2 CO 3 PhMe 100 °C. N + (F3CSO2)2O + ROH ROSO2CF3 ROSOCF3 (ref. 146) competing process for hindered alcohols Scheme 20 Asymmetric transformations A striking example of an ‘absolute’ asymmetric reaction was reported by Sakamoto et al.160 in which photolysis of the crystalline thioamide 15 which exists in a chiral space group a§orded the b-thiolactam 16 with 94% ee at 58% completion. Feringa’s and Kellogg’s groups have reported that the versatile synthetic intermediate 17 can be obtained in essentially optically pure form ([99% ee) using second-order asymmetric transformations,161 Scheme 25. New catalyst systems for asymmetric cyclopropanations 162 Michael reactions,163 aldol,164 Mukaiyama-type reactions165,166 and Diels–Alder reactions167 represent useful additions to present methodology as does the first example of an enantioselective catalytic protonation of a silyl enol ether,168 Scheme 26.Desymmetrisation of polyols169 and epoxides170 is a potentially powerful strategy for asymmetric synthesis and has been further refined this year Scheme 27. The application of asymmetric reductions171–177 and aldol-type178–182 reactions continues to be explored for the synthesis of stereochemically complex intermediates as illustrated in Scheme 28. Asymmetric 1,3-dipolar cycloadditions have enormous synthetic potential a prospect which has been realised by a number of workers,183,184 Scheme 29. 89 Aliphatic and alicyclic chemistry Scheme 21 Reagents and conditions i Pd(PPh 3 ) 4 CuCl,K 2 CO 3 THF 25 °C 0.5 h; ii copper thiophene-2-carboxylate (1.5 equiv.) NMP 0 °C 15 min; iii CuCl (5 equiv.) DMF 60 °C.O O Bu 98% O O Bu 64% (ref. 156) Scheme 22 Reagents and conditions i,Bun (TMSCH 2 ) CuLi Et 2 O,[78 °C ca. 5 s; ii BuCu(thexyl) Li·LiCN Et 2 O,[78 °C ca. 5 s. 90 Peter Quayle Scheme 23 Reagents and conditions i CrCl 2 (15 mol%) Mn TMSCl THF room temp.; ii CrCl 2 (7 mol%) Mn TMSCl THF room temp.; iii p-TsOH cat. H 2 O. Ph Br + AcO Zn 2 Ph AcO i (ref. 158) 88% O Cl + BuMnCl O Bu i 74% (ref. 159) Scheme 24 Reagents and conditions i 3%Fe(acac) 3 THF NMP room temp. Scheme 25 Reagents and conditions i hv solid state; ii Candida antarctica n-hexane BunOH. 91 Aliphatic and alicyclic chemistry OSiMe3 Ph O Ph 89% (90%ee) (ref.168) Scheme 26 Reagents and conditions i (R)-BINOL-Me SnCl 4 2,6-dimethylphenol [80 °C. Scheme 27 Reagents and conditions i 2mol% catalyst B Et 2 O. 3 Alicyclic chemistry Cyclopropanes The Simmons–Smith cyclopropanation is undoubtedly one of the most synthetically useful methods for the preparation of cyclopropanes. Charette has published the results of in-depth spectroscopic185 and structural186 studies of the reactive intermediates generated during the course of these reactions. Synthetic applications by this187,188 and other groups189 have centred upon the use of asymmetric variations of this reaction in synthesis of U-106305 and FR-900848. Falck’s synthesis of FR-900848 utilised a diastereoselective coupling of lithiocyclopropanes,190a whereas the approach adopted by Zercher relied upon ylide chemistry for the installation of contiguous cyclopropanes,190b Scheme 30.The transition metal-catalysed decomposition of a- diazocarbonyl compounds has been exploited in both an intermolecular191 and intramolecular192–194 sense to provide a variety of functionalised cyclopropanes Scheme 31. The synthetic potential of the Kulinkovich195 reaction has been investigated by a number of workers who report that mono- and poly-cyclic cyclopropanes are readily accessible by this methodology Scheme 32. Hanessian196 and Warren197 have utilised intramolecular displacement reactions for the synthesis of optically active cyclopropanes. Wege198 has developed a highly convergent strategy to (^)-favelanone based upon a Diels–Alder reaction of the highly reactive cyclopropene 18 Scheme 33.92 Peter Quayle Scheme 28 Reagents and conditions i TiCl 4 [78 °C; ii (allyl)SnBu 3 ; iii (ipc) 2 BCH 2 CH––CHMe,[78 °C; iv H 2 O 2 NaOH. Cyclobutanes Cyclobutyl ketones are useful synthetic intermediates199 which are now readily available200 from substituted 1,4-dihalobutanes by treatment with lithium naphthalenide. Cycloaddition201 of ketones with cyclopentadiene at low temperatures (\ [30 °C) a§ords unstable [4]2] cycloadducts 19 which undergo [3,3] sigmatropic rearrangements to cyclobutanones 20 the formal products of [2]2] cycloaddition in good 93 Aliphatic and alicyclic chemistry CH3 N O O O + Ph N O– Ph + O PhN Ph CH3 N O O endo > 95 5 (93% ee) (ref 184) i O O Ph Ph Ph Ph O O Ti OTs OTs Me Me Catalyst C O Scheme 29 Reagents and conditions i catalyst C room temp.24 h. overall yields. Photocycloaddition reactions provide access to diversely functionalised cyclobutanes,202 as does the copper triflate203 variant of this procedure. Sequential cycloadditions of functionalised cyclobutadienes prepared in situ from cyclobutadiene –Fe(CO) 3 complexes provide a novel approach to the synthesis of oligomeric cyclobutanes–‘ladderanes’.204 The pKa of protons in the cubane 21 has been estimated as lying between 20.5 and 22.5 deprotonation of 21 can be e§ected using NaN(SiMe 3 ) 2 to form a stable anion which can be trapped with a variety of electrophiles,205 Scheme 34. Cyclopentanes Application of the Trost metal-catalysed Alder–ene reaction to natural product synthesis has gained momentum as exemplified in approaches to the picrotoxanes206 and pumiliotoxins,207 Scheme 35.Cobalt208 and samarium209 analogues of the Trost palladium reaction have also appeared. Tandem ketyl–olefin coupling reactions,210 nickel catalysed alkynyl enone cyclisations,211 and cyclisation of organozinc212,213 reagents provide valuable new strategies for the synthesis of fused cyclopentanes Scheme 36. Bicyclo[3.3.0]octanes and bicyclo[4.3.0]nonanes are readily accessible using Piers’s bifunctional organocopper chemistry,214 whilst spiro[cyclopentane-1,1@- indane]diones a structural feature of fredericamycin A may be obtained215 in optically pure form from readily available epoxy alcohol derivatives Scheme 37. The synthesis of cyclopentane derivatives via C–H insertion reactions is now well established Taber216 has developed semi-empirical rules which allow prediction of the stereochemical outcome of these reactions Scheme 38.The Pauson–Khand reaction has seen many developments advances this year including its application to solidsupported synthesis,217 photochemical activation218 and its application to the synthesis of cyclopentanes fused to carbohydrate219 and b-lactam220 templates Scheme 39. Analogous titanium221 and iron222 [2]2]1] cycloadditions further expand the potential scope of this general strategy whose synthetic utility will doubtless be the subject of future studies. Cyclohexanes The synthesis of functionalised cyclohexanes from aromatic compounds has seen 94 Peter Quayle Scheme 30 Reagents and conditions i N,N-dimethyl-2-butyl-1,3,2-dioxaboralane-2- carboxamide Zn(CH 2 I) 1,2-dimethoxyethane CH 2 Cl 2 0 °C; ii BusLi; iii [ICu(PBu 3 )]; iv O 2 ; v (CH 3 ) 3 S(O)CH 2 DMSO.something of a revival as highlighted in an overview of the area,223 Scheme 40. The Diels–Alder reaction has again been the subject of much scrutiny both from a theoretical224 and synthetic standpoint. The use of copper,225 niobium and tantalum226 complexes and boron-containing Brønsted–Lewis acids227,228 enable Diels–Alder reactions to be performed at low temperatures and with good to excellent levels of asymmetric induction. Some examples of interesting Diels–Alder reactions are given in Fig. 1 (see refs. 229–237). The total synthesis of (])-digitoxigenin238 and 95 Aliphatic and alicyclic chemistry O RO R1O OR2 O R1O OR2 CO2Et OR (ref 191) i OMOM C O N2 OMOM CO2Me H OMOM O H CO2Me 58% ii (ref 192) O O CHN2 O O CH3 O O O CH3 O 61%(90% ee) iii O O But But catalyst D Scheme 31 Reagents and conditions i EtO 2 CCHN 2 Rh(OAc) 4 CH 2 Cl 2 room temp.; ii Cu(acac) 2 ClCH 2 CH 2 Cl heat; iii [Cu(MeCN) 4 ]PF 6 catalyst D.(])-andrenosterone239 both utilise intramolecular Diels–Alder (IMDA) reactions as key steps albeit of di§ering types Scheme 41. Organometallic240–245 and free-radical cyclisations246,247 and conjugate addition reactions248–251 all provide ready access to functionalised cyclohexanes Scheme 42. Finally a general route to the synthesis of (more potent) analogues of the acetylcholinesterase inhibitor huperzine A 22 and their interaction with AChE has been reported.252 It is hoped that such studies will result in the development of new agents for the management of Alzheimer’s disease.96 Peter Quayle CO2Me Ph ( ) n OH Ph ( ) n n = 1 77% n = 2 89% [ref. 195( b)] R1 NR2 O LnTi R3 + R1 NR2 R3 50–75% [ref. 195( c)] i Scheme 32 Reagents and conditions i Ti(OPr*) 4 Pr*MgCl. Scheme 33 Reagents and conditions i LiEt 3 BH THF [78 °C; ii TFA CH 2 Cl 2 0 °C; iii ButOK ButOH. 97 Aliphatic and alicyclic chemistry OMe O O R I I R O i ii 45% overall for R = CH3 (ref 200) + O • R1 R2 O R2 R1 19 (ref 201) O R1 R2 H H 20 Claisen T > –30 °C Ha OMe Hb Hc + MeO MeO iii [ref. 202( a)] [4 + 2] (continued) 98 Peter Quayle Scheme 34 Reagents and conditions i Li cat. naphthalene THF 0 °C; ii H 3 O`; iii hv Pyrex filter PhH; iv naphthalene-2-methanol THF pyridine; v ceric ammonium nitrate dry acetone,[46 to 0 °C; vi NaN(SiMe 3 ) 2 .99 Aliphatic and alicyclic chemistry O Br TBDMSO TBDMSO CH3 O Br RO CH3 RO 70% i P P ( )3 (ref. 206) OBn OH H NH H H ii 61% (+)-pumiliotoxin C Scheme 35 Reagents and conditions i Pd(OAc) 2 (cat.) 2-diphenylphosphinobenzoic acid (cat.); ii (dba) 3 Pd 2 ·CHCl 3 (2.5 mol%) N,N@-bis(benzylidene)ethylene diamine (BEEDA) (5 mol%) polymethylhydrosiloxane (PMHS) (10 equiv.) AcOH (1 equiv.) dichloroethane. Medium large and polycyclic ring systems The use of [4]3] cycloadditions has been e§ectively utilised for the stereoselective synthesis of functionalised 8-oxabicyclo[3.2.1]octenes,253–255 which are themselves versatile synthetic intermediates. A related strategy has also been applied to the synthesis (])-5-epitreulenolide,255a Scheme 43. An intramolecular palladium-TMM cycloaddition reaction has been applied to the synthesis of ([)-isoclavukerin A256 whilst metal-promoted higher-order cycloaddition reactions have also been utilised to good e§ect for the synthesis of a variety of cycloheptane derivatives,257 Scheme 44.The synthesis of cyclooctanes is still dominated by the global preoccupation with the taxane diterpenoids. Representative approaches to the central core of this ring system include pinacol-type couplings,258 IMDA259 and intramolecular alkylation reactions as depicted in Scheme 45.260 Radical261 and metal-promoted262 ring enlargement reactions have general applicability to the synthesis of medium-sized rings. The synthesis of enediyne-containing macrocycles has again been the subject of much interest resulting in the synthesis of the basic core of C-1027263 and a functionalised model system of the neocarzinostatin chromophore.264 Most syntheses of this compound rely upon now well-established palladium-catalysed coupling reactions for the installation of the enediyne moiety.However in a novel departure Nicolaou has reported that macrocyclic enediynes can be prepared via a retro-Diels–Alder sequence 265 Scheme 46. The syntheses of a number of carbocycles of theoretical interest e.g. 23 24 and 25 Fig. 2 have appeared this year (see refs. 266–268). 100 Peter Quayle Scheme 36 Reagents and conditions i SmI 2 (1 equiv.) THF HMPA 0 °C; ii Bu 2 Zn BuZnCl Ni(COD) 2 (5 mol%) PPh 3 (25 mol%); iii R 2 Zn or RZnCl Ni(COD) 2 (5 mol%); iv Et 2 Zn (2 equiv.) MnBr 2 (5 mol%) CuCl (3 mol%) DMPU 60 °C 0.5–3h. 101 Aliphatic and alicyclic chemistry Scheme 37 Reagents and conditions i TMSBr,[78 °C; ii BF 3 ·OEt 2 0 °C.N2 O O MeO2C MeO2C O O 89% i (ref. 216) O O CO2Me O O 85% i N2 CO2Me Scheme 38 Reagents and conditions i Rh 2 (C 7 H 15 CO 2 ) 4 CH 2 Cl 2 . 102 Peter Quayle OMBn NTs O O NTs O H CO2H 'good yield' i,ii EtO2C EtO2C O EtO2C EtO2C iii 95% O MBnO OMe O O OMe H 30% iv (ref. 219) (ref. 218) (ref. 217) N BnO O N BnO O H 95% v,vi (ref. 220) O Scheme 39 Reagents and conditions i Co 2 (CO) 8 NMO CH 2 Cl 2 ; ii TFA CH 2 Cl 2 ; iii Co 2 (CO) 8 (1 atm) hv DME; iv Co 2 (CO) 8 CO(1 atm) 110 °C; v Co 2 (CO) 8 PhMe room temp.; vi heat. 103 Aliphatic and alicyclic chemistry OH MeO OH OH MeO O i 61% (ref. 223) HO (NH3)5Os2+ O (NH3)5O5 O 86% ii (ref. 223) O N But Cr(CO)3 O N But iii,iv (ref. 223) Scheme 40 Reagents and conditions i NaIO 4 ; ii but-3-en-2-one Pr 2 *NEt; iii MeLi; iv allyl bromide.R OSO2 O SO2 R (ref. 229) B F O O – N H H B O O O O Ph – F (ref. 230) OR (continued) 104 Peter Quayle OBn OR BnO OBn OBn BnO OR O O H CO2Me H OBn (ref. 232) N O OSiR3 MeO N MeO O CO2Me OH (ref. 233) O O O (ref. 234) O P(OEt)2 O OAc O PPh2 O (ref. 235) N O SOTol Boc N O Boc (ref. 236) Fig. 1 105 Aliphatic and alicyclic chemistry (continued) Scheme 41 Reagents and conditions i PhMe 200 °C 3 h; ii PhMe 200 °C 18 h; iii Nu~; iv CeIV; v Bun 3 SnH AIBN heat. 106 Peter Quayle OMOM MeO Li Fe(CO)3 OMe MeO + + BF4 – OMOM MeO OMe Fe(CO)3 OMe MeO O O H CN MeO O H steps NMe (ref. 244) O I CO2Me TBSO O CO2Me H TBSO (ref. 247) 85% v OH lycoramine Scheme 41 107 Aliphatic and alicyclic chemistry Scheme 42 Reagents and conditions i (dba) 3 Pd 2 ·CHCl 3 HCO 2 H dichloroethane room temp.; ii (CH 3 ) 2 C~CN (2 equiv.) [78 °C; iii H 3 O`; iv Pd0 CuI; v Bu 3 SnH NiII; vi heat; vii base; viii BusLi THF,[78 °C 5 min; ix MeOTf Et 2 O 0 °C 3 h.108 Peter Quayle Scheme 43 Reagents and conditions i EtMgCl (1 equiv.); ii Zn–Ag; iii 2,4-dibromopentan- 3-one; iv Rh 2 L 4 ; v catalyst,[78 °C CH 2 Cl 2 ; vi 140 °C. 109 Aliphatic and alicyclic chemistry Scheme 44 Reagents and conditions i Pd(OAc) 2 ) (Pr*O) 3 P Me 3 SnOAc; ii DBU. 110 Peter Quayle O CHO O O O O OH OH i 74% (ref. 258) O OTIPS OMe TBSO TBSO H O H H OMe OTIPS (ref. 259) ii 95% CHO O O SO2Ph O O O O O O SO2Ph O iii iv 95% (ref. 260) O CO2Et O N S N CH3 O CO2Et CH3 v 76% (ref.261) O Br ButO H MeO2C ButO CO2Me H O ButO CO2Me H O vi vii 63% (2.5 1) + Scheme 45 Reagents and conditions i SmI 2 25 °C; i PhMe 140 °C 110 h; iii LiN(SiMe 3 ) 2 . THF 0 °C; iv Dess–Martin; v Bun 3 SnH PhH 80 °C AIBN; vi In,H 2 O; vii DBU. 111 Aliphatic and alicyclic chemistry OTBS MPMO OTES CHO TBSO TBSO OTBS MPMO OTES TBSO TBSO 84% (ref. 263) H O O O O OH OH 84% ii,iii (ref. 264) OH 90% iv (ref. 265) OH Scheme 46 Reagents and conditions i LiN(SiMe 3 ) 2 CeCl 3 THF [30 °C]room temp.; ii TiCl 3 DME Zn–Cu; iii H 3 O`; iv KH THF 25 °C 30 min. Fig. 2 112 Peter Quayle References 1 A. J. Birch Pure Appl. Chem. 1996 68 553. 2 T. J. Donohoe R. Garg and C. A. Stevenson Tetrahedron Asymmetry 1996 7 317. 3 P. Timmerman H. L. Anderson R. Faust J.-F. Nierengarten T. Habicher P.Seiler and F. Diederich Tetrahedron 1996 52 4925; N. S. Goro§ Acc. Chem. Res. 1996 29 77. 4 P.W. Rabideau and A. Sygula Acc. Chem. Res. 1996 29 235. 5 J.W. Grissom G. U. Gunawardena D. Klingberg and D. Huang Tetrahedron 1996 52 6453; B. Ko� nig Angew. Chem. Int. Ed. Engl. 1996 35 165. 6 A.W. Czarnik and J. A. Ellman (eds.) Acc. Chem. Res. 1996 29 111. 7 H.C. J. Ottenheijm and D. C. Rees Tetrahedron 1996 52 4527; J. S. Fru� chtel and G. Jung Angew. Chem. Int. Ed. Engl. 1996 35 17. 8 Chem. Eng. News 1996 Nov. 4 p. 37. 9 (a) S. J. Danishefsky and M. T. Bilodeau Angew. Chem. Int. Ed. Engl. 1996 35 1380; (b) B. Fraser-Reid Acc. Chem. Res. 1996 29 57. 10 (a) G.-J. Boons Tetrahedron 1996 52 1855; (b) B. Ganem Acc. Chem. Res. 1996 29 340. 11 (a) T. Kolter and K. Sandho§ Chem. Soc. Rev.1996 25 371; (b) R.A. Dwek Chem. Rev. 1996 96 683. 12 G.M. Blackburn A. Datta and L. J. Partridge Pure Appl. Chem. 1996 68 2009; M. Egli Angew. Chem. Int. Ed. Engl. 1996 35 1894; A. J. Kirby ibid. 706; D. L. Boger and D. S. Johnson ibid. 1438; C. Nu� sslein- Volhard Angew. Chem. Int. Ed. Engl. 1996 35 2176; N. Sta� ter W. N. Lipscomb T. Klabunde and B. Krebs ibid. 2024; A. E. Stu� tz ibid. 1926. H. D. Uhlrich E. M. G. Driggers and P. G. Schultz Acta Chem. Scand. 1996 50 328; K. Kiluchi and D. Hilvert ibid. 333; A. J. Kiry ibid. 203; E. Keinan S. C. Sinha D. Shabat H. Itzhaky and J.-L. Reymond ibid. 679; R. A. Lerner and C. F. Barbas III ibid. 672; S. Laschat Angew. Chem. Int. Ed. Engl. 1996 35 289. 13 S. Colonna N. Gaggero P. Pasta and G. Ottolina Chem. Commun. 1996 2303. 14 G. Cardillo and C.Tomasini Chem. Soc. Rev. 1996 25 117. 15 C.-J. Li Tetrahedron 1996 52 5643; T. H. Chan Pure Appl. Chem. 1996 68 919. 16 S. McN. Sieburth and N. T. Cunard Tetrahedron 1996 52 6251. 17 (a) B.E. Smart (ed.) Chem. Rev. 1996 96 1555; S. Rozen Acc. Chem. Res. 1996 29 243; (b) F. S. Rowland Angew. Chem. Int. Ed. Engl. 1996 35 1786. 18 B.M. Trost Tetrahedron 1996 52 7201; I. Klement M. Rottlander C. E. Tucker T. N. Majid P. Knochel P. Venegas and G. Cahiez Pure Appl. Chem. 1996 68 1; C. Floriani ibid. 779; D. H. R. Barton and D. K. Taylor ibid. 497. E. Drenre and P. M. Budzelaar Chem. Rev. 1996 96 663. 19 J. Tsuji and T. Mandai Synthesis 1996 1; J. M. J. Williams Synlett 1996 705; B. M. Trost and D. L. Van Vranken Chem. Rev. 1996 96 395. 20 A. H. Hoveyda and J. P. Morken Angew.Chem. Int. Ed. Engl. 1996 35 1262; A. Fu� rstner and B. Bogdanovic� Angew. Chem. Int. Ed. Engl. 1996 35 2442. 21 P. Wipf and H. Jahn Tetrahedron 1996 52 12 853; E.-I. Negishi Chem. Soc. Rev. 1996 25 417. 22 G. A. Molander and C. R. Harris Chem. Rev. 1996 96 307. 23 (a) R. Kra� mer Angew. Chem. Int. Ed. Engl. 1996 35 1197; (b) B.M. Trost Chem. Ber. 1996 129 1409. 24 I. Creton I. Marek and J. F. Normant Synthesis 1996 1499. 25 A. Heumann and M. Re� glier Tetrahedron 1996 52 9289. 26 P. A. Wender (ed.) ‘Frontiers is’ Chem. Rev. 1996 96 1. 27 C. H. Schiesser and L. M. Wild Tetrahedron 1996 52 13 265; P. Chen Angew. Chem. Int. Ed. Engl. 1996 35 1478; U. Koert ibid. 405; I. Ryu and N. Sonoda ibid. 1050. 28 B. Giese B. Kopping T. Go� bel J. Dickhaut G. Thomn K.-J. Kulicke and F.Trach Org. React. 1996 48 301. 29 P. Herdewijin Liebigs Ann. 1996 1337; J. Rebek Acta Chem. Scand. 1996 50 707; H.-J. Bo� hm and G. Klebe Angew. Chem. Int. Ed. Engl. 1996 35 2588; T. D. James K. R. A. S. Sandayake and S. Shinkai ibid. 1910; J. L. Attwood K. T. Holman and J. W. Steel Chem. Commun. 1996 1401. 30 E. A. Winter and J. Rebek Jr. Acta Chem. Scand. 1996 50 469; J. Rebek Jr. Chem. Soc. Rev. 1996 25 255. 31 P. T. Glink C. Schiavo J. F. Stoddart and D. J. Williams Chem. Commun. 1996 1483; D. Philp and J. F. Stoddart Angew. Chem. Int. Ed. Engl. 1996 35 1154; A. C. Benniston Chem. Soc. Rev. 1996 25 427. 32 C. F. van Nostrum and R. J. M. Nolte Chem. Commun. 1996 2385. 33 M. Przybylski and M.O. Glocker Angew. Chem. Int. Ed. Engl. 1996 35 806. 34 J. R. Helliwell and M. Helliwell Chem.Commun. 1996 1595. 35 (a) G. Ho� fle N. Bedorf H. Steinmetz D. Schomburg K. Gerth and H. Reinbach Angew. Chem. Int. Ed. Engl. 1996 35 1567; (b) T. Onada R. Shirai Y. Koiso and S. Iwasaki Tetrahedron Lett. 1996 37 4397. 36 A. Balog D. Meng T. Kamenecka P. Bartinato D.-S. Su E. J. Sorensen and S. J. Danishefsky Angew. Chem. Int. Ed. Engl. 1996 35 2803. 37 T. Igarashi M. Satake and T. Yasumoto J. Am. Chem. Soc. 1996 118 479. 38 W. Zheng J. A. DeMattei J.-P. Wu J. J.-W. Duan L. R. Cook H. Oinuma and Y. Kishi J. Am. Chem. Soc. 1996 118 7946. 113 Aliphatic and alicyclic chemistry 39 T. K. Park I. J. Kim S. Hu M. T. Bilodeau J. T. Randolph O. Kwon and S. Danishefsky J. Am. Chem. Soc. 1996 118 11 488. 40 A. B. Smith III and G. R. Ott J. Am. Chem. Soc. 1996 118 13 095. 41 J.M. Humphrey J. A. Aggen and R. A. Chamberlin J. Am. Chem. Soc. 1996 118 11 759. 42 K. C. Nicolaou K. Ajito A. P. Patron H. Khatuya P. K. Richter and P. Berinato J. Am. Chem. Soc. 1996 118 3059; K. C. Nicolaou A. P. Patron K. Ajito P. K. Richter H. Khatuya P. Berinato R. A. Miller and M.J. Tomaszewski Chem. Eur. J. 1996 2 847. 43 S. J. Danishefsky J. J. Masters W.B. Young J. T. Link L. B. Snyder T. V. Magee D. K. Jung R. C. A. Isaacs W.G. Bornmann C. A. Alaimo C. A. Coburn and M.J. Di Grandi J. Am. Chem. Soc. 1996 118 2843. 44 T. D. Cushing J. F. Sanz-Cervera and R. M. Williams J. Am. Chem. Soc. 1996 118 557. 45 (a) S.M. Allin and S. J. Shuttleworth Tetrahedron Lett. 1996 37 8023; (b) S. Kobayashi I. Hachiya and M. Yasuda ibid. 5569. 46 M. Reggelin and V. Brenig Tetrahedron Lett.1996 37 6851. 47 (a)M. Larhed G. Lindeberg and A. Hallberg Tetrahedron Lett. 1996 37 8219; (b) S. Marquis and M. Arlt ibid. 5491. 48 J. H. van Maarseveen J. A. J. den Hartog V. Engelen E. Finner G. Visser and C. G. Kruse Tetrahedron Lett. 1996 37 8249. 49 S. C. Gilbertson and X. Wang Tetrahedron Lett. 1996 37 6475. 50 S. Kobayashi M. Moriwaki R. Akiyama S. Suzuki and I. Hachiya Tetrahedron Lett. 1996 37 7783. 51 E. J. Corey and S. Lin J. Am. Chem. Soc. 1996 118 8765. 52 S. Denmark A. Thorarensen and D. Middleton J. Am. Chem. Soc. 1996 118 8266. 53 J. C. McWilliams J. D. Armstrong III N. Zheng R. P. Volante and J. P. Reider J. Am. Chem. Soc. 1996 118 11 970. 54 D. Y. Kondakov S. Wang and E.-I. Negishi Tetrahedron Lett. 1996 118 3803. 55 G. H. Mu� ller and H. Waldmann Tetrahedron Lett.1996 37 3833. 56 R. Grigg V. Loganathan and V. Sridharan Tetrahedron Lett. 1996 37 3399. 57 J.-F. Nguefack V. Bolitt and D. Sinou Tetrahedron Lett. 1996 37 59. 58 (a) G. Pattenden and L. Roberts Tetrahedron Lett. 1996 37 4191; (b) P.A. Zoretic Z. Chen Y. Zhang and A. A. Ribeiro ibid. 7909. 59 A. S. Kende M. Journet R. G. Ball and N. N. Tsou Tetrahedron Lett. 1996 37 6295. 60 K. K. Wang Z. Wang A. Tarli and P. Gennett J. Am. Chem. Soc. 1996 118 10 783. 61 S. Maiti S. Bhaduri B. Achari A. K. Bannerjee N. P. Nayak and A.K. Mukherjee Tetrahedron Lett. 1996 118 8061. 62 J. H. Rigby N. C. Warshakoon and M. J. Heeg J. Am. Chem. Soc. 1996 118 6094. 63 D. A. Frey N. Wu and K. D. Moeller Tetrahedron Lett. 1996 37 8317. 64 J.-I. Yoshida M. Sugawara and N. Kise Tetrahedron Lett. 1996 37 3157.65 H. Takakura K. Toyoda and S. Yamamura Tetrahedron Lett. 1996 37 4043. 66 N. Hayashi K. Fujiwara and A. Murai Tetrahedron Lett. 1996 37 6173. 67 F. B. Charvillon and R. Amouroux Tetrahedron Lett. 1996 37 5103. 68 A. Mann L. Quaranta G. Reginato and M. Taddei Tetrahedron Lett. 1996 118 2651. 69 (a) T. Fukuda and T. Katsuki Tetrahedron Lett. 1996 37 4389; (b) A. Kumar and V. Bhakuni ibid. 4751. 70 (a) Y. Mori K. Yaegashi K. Iwase Y. Yamamori and H. Furukawa Tetrahedron Lett. 1996 37 2605; (b) Y. Mori K. Yaegashi and H. H. Furukawa J. Am. Chem. Soc. 1996 118 8158. 71 B. Achmatowicz P. Jankowski and J. Wicha Tetrahedron Lett. 1996 37 5589. 72 F. E. Ziegler and Y. Wang Tetrahedron Lett. 1996 37 6299. 73 M.K. Schwaebe and R. D. Little Tetrahedron Lett. 1996 37 6635. 74 (a) R. Curci L.D’Accolti A. Dinoi C. Fusco and A. Rosa Tetrahedron Lett. 1996 35 115; (b) R. Curci A. Detomaso M.E. Lattanzio and G. B. Carpenter J. Am. Chem. Soc. 1996 118 11 098. 75 E. Kraka Z. Konkoli D. Cremer J. Fowler and H. F. Schaefer J. Am. Chem. Soc. 1996 118 10 595. 76 R. L. Beddoes J. E. Painter P. Quayle and P. Patel Tetrahedron Lett. 1996 37 9385. 77 D. Yang Y.-C. Yip M.-W. Tang M.-K. Wong J.-H. Zheng and K.-K. Cheung J. Am. Chem. Soc. 1996 118 491; D. Yang X.-C. Wang M.-K. Wong Y.-C. Yip and M.-W. Tang ibid. 11 311. 78 K. Takaku H. Shinokubo and K. Oshima Tetrahedron Lett. 1996 37 6781. 79 G. R. Jones and Y. Landais Tetrahedron 1996 52 7599. 80 I. Fleming and D. Lee Tetrahedron Lett. 1996 37 6929. 81 P.-O. Norrby H. Becker and K. B. Sharpless J. Am. Chem. Soc. 1996 118 35; E. J. Corey and M.C.Noe ibid. 319; H. Becker and K. B. Sharpless Angew. Chem. Int. Ed. Engl. 1996 35 448; E. J. Corey and M.C. Noe J. Am. Chem. Soc. 1996 118 11 038; S. Dapprich G. Ujaque F. Maseras A. Lledo� s,D.G. Musaev and K. Morokuma ibid. 11 660. 82 (a) H. Nakamura K. Fujimaki and A. Murai Tetrahedron Lett. 1996 37 3153; (b) H. Oikawa T. Kagawa T. Kobayashi and A. Ichihara Tetrahedron Lett. 1996 37 6169; (c) L.-X. Liao and W.-S. Zhou ibid. 6371. 83 D. J. Krysan Tetrahedron Lett. 1996 37 1375. 84 (a) G. Li. H.-T. Chang and K. B. Sharpless Angew. Chem. Int. Ed. Engl. 1996 35 451; (b) M. Bruncko 114 Peter Quayle T.-A. V. Khuong and K. B. Sharpless ibid. 454. 85 K. David C. Ariente A. Greiner J. Gore� and B. Cazes Tetrahedron Lett. 1996 37 3335. 86 B. A. Solaja D. R. Millic� and M.J.Gasic� Tetrahedron Lett. 1996 37 3765. 87 N. Koniya T. Naota and S.-I. Murahashi Tetrahedron Lett. 1996 37 1633. 88 K. Sung and T. T. Tidwell J. Am. Chem. Soc. 1996 118 2768. 89 T. Q. Dinh and R. W. Armstrong Tetrahedron Lett. 1996 37 1161. 90 S. Tsunoi I. Ryu H. Muraoka M. Tanaka M. Komatsu and N. Sonoda Tetrahedron Lett. 1996 118 6729. 91 M. V. Luzgin V. N. Romannikov A. G. Stepanov and K. I. Zamaraev J. Am. Chem. Soc. 1996 118 10 890. 92 J. Du Bois J. Hong E. M. Carreira and M. W. Day J. Am. Chem. Soc. 1996 118 915. 93 S. Kobayashi H. Ishitani S. Komiyama D. C. Oniciu and A. R. Kratritzky Tetrahedron Lett. 1996 37 3731. 94 S. Kim I. Y. Lee J.-Y. Yoon and D. H. Oh J. Am. Chem. Soc. 1996 118 5138. 95 M. Carducci S. Fiovanti M. A. Loreto L. Pellacani and P. A. Tardella Tetrahedron Lett.1996 37 3777. 96 T. Tsunoda H. Yamamoto K. Goda and S. Ito� Tetrahedron Lett. 1996 37 2457. 97 S. Cenini F. Ragaini S. Tollari and D. Paone J. Am. Chem. Soc. 1996 118 11 964. 98 P. Magnus and M. B. Roe Tetrahedron Lett. 1996 37 303. 99 J. Clayden and S. Warren Angew. Chem. Int. Ed. Engl. 1996 35 241. 100 M. Lakhrissi and Y. Chapleur Angew. Chem. Int. Ed. Engl. 1996 35 750. 101 U. Klar and P. Diecke Tetrahedron Lett. 1996 37 4141. 102 (a) P. Couture J. K. Terlouw and J. Warkentin J. Am. Chem. Soc. 1996 118 4214; (b) J.H. Rigby A. Cavezza and G. Ahmed ibid. 12 848. 103 B. Quiclet-Sire and S. Z. Zard J. Am. Chem. Soc. 1996 118 1209. 104 K. Muruoka M. Oishi and H. Yammamoto J. Am. Chem. Soc. 1996 118 2289. 105 (a) J. Gong and P. L. Fuchs J. Am. Chem. Soc. 1996 118 4486; (b. L. Fuchs ibid. 11 986; (c) J. S. Xiang and P. L. Fuchs Tetrahedron Lett. 1996 37 5269. 106 R. K. Dieter L. E. Nice and S. E. Velu Tetrahedron Lett. 1996 37 2377. 107 J. Uenishi R. Kawahama Y. Shiga O. Yonemitsu and J. Tsuji Tetrahedron Lett. 1996 37 6759. 108 T. Tsunoda F. Ozaki N. Shirakata Y. Tamaoka H. Yamamoto and S. Ito� Tetrahedron Lett. 1996 37 2463. 109 S. Oi K. Kashiwaga E. Terada K. Ohuchi and Y. Inoue Tetrahedron Lett. 1996 37 6351. 110 G. Cappozi A. Dios R. W. Franck A. Geer C. Marzabadi S. Menchetti C. Nativi and M. Tamarez Angew. Chem. Int. Ed. Engl. 1996 118 777. 111 G. Stork and J. J. La Clair J. Am. Chem. Soc. 1996 118 247. 112 P. Quayle Annu. Rep. Prog. Chem. Sect. B Org. Chem. 1995 92 73. 113 P. Scwab R. H. Grubbs and J. Ziller J. Am. Chem. Soc.1996 118 100. 114 H. S. Overkleeft and U. K. Pandit Tetrahedron Lett. 1996 37 547. 115 A. Fu� rstner and N. Kindler Tetrahedron Lett. 1996 37 7005. 116 D. Winkler J. E. Stelmach and J. Axten Tetrahedron Lett. 1996 37 4317. 117 M. S. Visser N. M. Heron M. T. Didiuk J. F. Sagal and A. H. Hoveyda J. Am. Chem. Soc. 1996 118 4291. 118 Z. Xu C.W. Johannes S. S. Salman and A. H. Hoveyda J. Am. Chem. Soc. 1996 118 10 926. 119 K. C. Nicolaou M.H. D. Postema E.W. Yue and A. Nadin J. Am. Chem. Soc. 1996 118 10 335. 120 W. J. Zuercher M. Hashimoto and R. H. Grubbs J. Am. Chem. Soc. 1996 118 6634. 121 M. Schuster J. Pernerstorfer and S. Blechert Angew. Chem. Int. Ed. Engl. 1996 35 1979. 122 C.M. Huwe J. Velder and S. Blechert Angew. Chem. Int. Ed. Engl. 1996 35 2376. 123 M. F. Schneider and S. Blechert Angew.Chem. Int. Ed. Engl. 1996 35 411. 124 O. Fujimura and R. H. Grubbs J. Am. Chem. Soc. 1996 118 2499. 125 S. P. Maddaford N. G. Andersen W.A. Cristofoli and B. A. Keay J. Am. Chem. Soc. 1996 118 10 766. 126 S. Superchi N. Sotomayor G. Miao B. Joseph and V. Snieckus Tetrahedron Lett. 1996 37 6057. 127 J. S. Xiang A. Mahadevan and P. L. Fuchs J. Am. Chem. Soc. 1996 118 4284. 128 L. Alcaraz G. Macdonald I. Kapfer N. J. Lewis and R. J. K. Taylor Tetrahedron Lett. 1996 37 6619. 129 C. Montalbetti M. Savignac J.-P. Gene� t J.-M. Roulet and P. Vogel Tetrahedron Lett. 1996 37 2225. 130 Y. Narukawa K. Nishi and H. Onoue Tetrahedron Lett. 1996 37 2589. 131 M. Caviccholi D. Bouyssi J. Gore� and J. Balme Tetrahedron Lett. 1996 37 1429. 132 M. Pour and E.-I. Negishi Tetrahedron Lett.1996 37 4679. 133 G. A. Kraus and B. M. Watson Tetrahedron Lett. 1996 37 5287. 134 J.-F. Nguefack V. Bolitt and D. Sinou Tetrahedron Lett. 1996 37 5527. 135 F. Ferri and M. Alami Tetrahedron Lett. 1996 37 7971. 136 I. E. Marko� F. Murphy and S. Dolan Tetrahedron Lett. 1996 37 2507. 137 R. J. Boyce and G. Pattenden Tetrahedron Lett. 1996 37 3501. 138 R. Shimizu and T. Fuchikami Tetrahedron Lett. 1996 37 8405. 139 M. Palucki J. P. Wolfe and S. Buchwald J. Am. Chem. Soc. 1996 118 10 333. 140 G. Mann and J. F. Hartwig J. Am. Chem. Soc. 1996 118 13 109. 141 For some recent synthetic applications see S. E. Gibson (ne� e Thomas) Contemp. Org. Synth. 1996 43 447. 115 Aliphatic and alicyclic chemistry 142 J. M. Brown and K. K. Hii Angew. Chem. Int. Ed. Engl. 1996 35 657. 143 J. Louie and J.F. Hartwig Angew. Chem. Int. Ed. Engl. 1996 35 2359. 144 V. Farina and M. Azad Hossain Tetrahedron Lett. 1996 37 6997. 145 S. Cacchi Pure Appl. Chem. 1996 68 45. 146 T. Netscher and P. Bohrer Tetrahedron Lett. 1996 37 8359. 147 K. C. Nicolaou M. Sato N. D. Miller J. L. Guzner J. Renaud and E. Untersteller Angew. Chem. Int. Ed. Engl. 1996 35 889. 148 G. D. Allred and L. S. Liebeskind J. Am. Chem. Soc. 1996 118 2748. 149 E. Piers and M. A. Romero J. Am. Chem. Soc. 1996 118 1215. 150 Y. Kondo T. Matsudaira J. Sato N. Murata and T. Sakamoto Angew. Chem. Int. Ed. Engl. 1996 35 736. 151 M. Uchiyama M. Koike M. Kameda Y. Kondo and T. Sakamoto J. Am. Chem. Soc. 1996 118 8733. 152 (a) A.H.M. de Vries A. Meetsma and B. L. Feringa Angew. Chem. Int. Ed. Engl. 1996 35 2374; (b) M. Kitamura T.Miki K. Nakano and R. Noyori Tetrahedron Lett. 1996 37 5141. 153 Y. Nakagawa M. Kanai Y. Nagaoka and K. Tomioka Tetrahedron Lett. 1996 37 7805. 154 K. Nilsson C. Ullenius and R. Krause J. Am. Chem. Soc. 1996 118 4194. 155 M. Eriksson A. Johansson M. Nilsson and T. Olsson J. Am. Chem. Soc. 1996 118 10 904. 156 S. H. Bertz M. Eriksson G. Miao and J. P. Snyder J. Am. Chem. Soc. 1996 118 10 906. 157 A. Fu� rstner and N. N. Shi J. Am. Chem. Soc. 1996 118 12 349. 158 C. K. Reddy and P. Knochel Angew. Chem. Int. Ed. Engl. 1996 35 1700. 159 G. Cahiez and S. Marquais Tetrahedron Lett. 1996 37 1773. 160 M. Sakamoto M. Takahashi K. Kamiya K. Yamaguchi T. Fujita and S. Watanabe J. Am. Chem. Soc. 1996 118 10 664. 161 H. van der Deen A. D. Cuiper R. P. Hof A. van Oeveren B. Feringa and R.M.Kellogg J. Am. Chem. Soc. 1996 118 3801. 162 A.M. Harm J. G. Knight and G. Stemp Tetrahedron Lett. 1996 37 6189. 163 H. Sasai E. Emori T. Arai and M. Shibasaki Tetrahedron Lett. 1996 37 5561. 164 S.-I. Kiyooka H. Kira and M. A. Hena Tetrahedron Lett. 1996 37 2597. 165 D. A. Evans J. A. Murry and M. C. Kozlowski J. Am. Chem. Soc. 1996 118 5814. 166 T. Ooi M. Takahashi and K. Maruoka J. Am. Chem. Soc. 1996 118 11 307. 167 Y. Hayashi J. J. Rohde and E. J. Corey J. Am. Chem. Soc. 1996 118 5502. 168 K. Ishihara S. Nakamura M. Kaneeda and H. Yamamoto J. Am. Chem. Soc. 1996 118 12 854. 169 D. E. Ward Y. Liu and D. How J. Am. Chem. Soc. 1996 118 3025. 170 K. B. Hansen J. L. Leighton and E. N. Jacobsen J. Am. Chem. Soc. 1996 118 10 924. For a review see D.M. Hodgson A. R. Gibbs and G. P.Lee Tetrahedron 1996 52 14 361. 171 A. B. Charette and A. Giroux Tetrahedron Lett. 1996 37 6669. 172 A. Robinson H.-Y. Li and J. Feaster Tetrahedron Lett. 1996 37 8321. 173 M. J. Burk Y. M. Wang and J. R. Lee J. Am. Chem. Soc. 1996 118 5142. 174 A. Fujii S. Hashiguchi N. Uematsu T. Ikariya and R. Noyori J. Am. Chem. Soc. 1996 118 118 2521. 175 X. Verdaguer U. E. W. Lange M. T. Reding and S. L. Buchwald J. Am. Chem. Soc. 1996 118 6784. 176 C. J. Helal P. A. Magriotis and E. J. Corey J. Am. Chem. Soc. 1996 118 10 938. 177 K. Nishide Y. Shigeta K. Obata and M. Node J. Am. Chem. Soc. 1996 118 13 013. 178 G. E. Keck K. A. Savin M. A. Welgarz and E. N. K. Cressman Tetrahedron Lett. 1996 37 3291. 179 M. B. Andrus and A. B. Argade Tetrahedron Lett. 1996 37 5049. 180 I. Paterson and T. Novak Tetrahedron Lett.1996 37 8243. 181 D. A. Evans M. J. Dart J. L. Du§y and M. G. Yang J. Am. Chem. Soc. 1996 118 4322; Tetrahedron Lett. 1996 37 1957. 182 L. F. Tietze K. Schiemann C. Wegner and C. Wul§ Chem. Eur. J. 1996 2 164. 183 K. Hori H. Kodama T. Ohta and I. Furukawa Tetrahedron Lett. 1996 37 5947. 184 K. V. Gothelf I. Thomsen and K. A. Jørgensen J. Am. Chem. Soc. 1996 118 59. 185 A. B. Charette and J.-F. Marcoux J. Am. Chem. Soc. 1996 118 4539. 186 A. B. Charette J.-F. Marcoux and F. Be� langer-Garie� py J. Am. Chem. Soc. 1996 118 6792. 187 A. B. Charette H. Justeau H. Label and D. Desche� nes Tetrahedron Lett. 1996 37 7925. 188 A. Charette and H. Lebel J. Am. Chem. Soc. 1996 118 118 10 327. 189 A. G. M. Barrett and K. Kasdorf J. Am. Chem. Soc. 1996 118 11 030. 190 (a) J.R.Falck B. Mekonnen J. Yu and J.-Y. Lai J. Am. Chem. Soc. 1996 118 6096; (b) R. E. J. Cebula M. R. Hanna C. R. Theberge C. A. Verbicky and C. K. Zercher Tetrahedron Lett. 1996 37 8341. 191 J. O. Hoberg and D. J. Cla§ey Tetrahedron Lett. 1996 37 2533. 192 L. N. Mander and D. J. Owen Tetrahedron Lett. 1996 118 723. 193 R. Tokunoh H. Tomiyama M. Sokeoka and M. Shibasaki Tetrahedron Lett. 1996 37 2449. 194 M. P. Doyle C. S. Peterson and D. L. Parker Jr Angew. Chem. Int. Ed. Engl. 1996 35 1334. 195 (a) J. Lee C. H. Kang H. Kim and J. K. Cha J. Am. Chem. Soc. 1996 118 291; (b) A. Kasatkin K. Kobayashi S. Okamoto and F. Sato Tetrahedron Lett. 1996 37 1849; (c) V. Chapplinski and A. de Meijere Angew. Chem. Int. Ed. Engl. 1996 35 413; (d) J. Lee H. Kim and J. K. Cha J. Am. Chem. Soc. 1996 118 4198.116 Peter Quayle 196 S. Hanessian U. Reinhold and S. Ninkovic Tetrahedron Lett. 1996 37 8967. 197 A. Nelson and S. Warren Tetrahedron Lett. 1996 37 1501. 198 W. Ng and D. Wege Tetrahedron Lett. 1996 37 6797. 199 B. M. Trost and D.W. C. Chen J. 118 12 541. 200 K. Ramig Y. Dong and S. D. van Arnum Tetrahedron Lett. 1996 37 443. 201 S. Yamabe T. Dai T. Minato T. Machiguchi and T. Hasegawa J. Am. Chem. Soc. 1996 118 6518. 202 (a) Y. Nakamura T. Mita and J. Nishimura Tetrahedron Lett. 1996 37 3877; (b) T.D. Golobish and W. P. Dailey ibid. 3239; (c) D. I. Schuster J. Cao N. Kaprinidis Y. Wu A. W. Jensen Q. Lu H. Wang and S. R. Wilson J. Am. Chem. Soc. 1996 118 5639. 203 S. Ghosh d. Parta and S. Samajdar Tetrahedron Lett. 1996 37 2073. 204 W. Li and M. A.Fox J. Am. Chem. Soc. 1996 118 1752. 205 K. Lukin J. Li R. Gilardi and P. C. Eaton Angew. Chem. Int. Ed. Engl. 1996 35 864. 206 B. M. Trost and M.J. Krische J. Am. Chem. Soc. 1996 118 233. 207 M. Toyata T. Asoh and K. Fukumoto Tetrahedron Lett. 1996 118 4401. 208 D. Llerena C. Aubert and M. Malacria Tetrahedron Lett. 1996 37 7353. 209 T. K. Sarkar and S. K. Nandy Tetrahedron Lett. 1996 37 5195. 210 (a) G.A. Molander and C. R. Harris J. Am. Chem. Soc. 1996 118 4059; (b) J. J.C. Grove� C. W. Holzapfel and D. B. G. Williams Tetrahedron Lett. 1996 37 1305. 211 J. Montgomery and A. V. Savchenko Tetrahedron Lett. 1996 118 2099. 212 E. Riguet I. Klement C. K. Reddy G. Cahiez and P. Knochel Tetrahedron Lett. 1996 37 5865. 213 C. Meyer I. Marek and J.-F. Normant Tetrahedron Lett. 1996 37 857.214 E. Piers and A. M. Kaller Tetrahedron Lett. 1996 37 5857. 215 Y. Kita S. Kitagaka R. Imai S. Okamoto S. Mihara Y. Yoshida S. Akai and H. Fujioka Tetrahedron Lett. 1996 37 1817. 216 D. F. Taber K. K. You and A. L. Rheingold J. Am. Chem. Soc. 1996 118 547. 217 G. L. Bolton Tetrahedron Lett. 1996 37 3433. 218 B. L. Pagenkopf and T. Livinghouse J. Am. Chem. Soc. 1996 118 2285. 219 V. S. Borodkin N. A. Shpiro V. A. Azov and N. K. Kocheykov Tetrahedron Lett. 1996 37 1489. 220 B. Alcaide C. Polanco and M. A. Sierra Tetrahedron Lett. 1996 37 6901. 221 (a) F.A. Hicks and S. L. Buchwald J. Am. Chem. Soc. 1996 118 11 688; (b) K. Suzuki H. Urabe and F. Sato ibid. 8729. 222 M. A. Sigman and B. E. Eaton J. Am. Chem. Soc. 1996 118 11 783. 223 T. Bach Angew. Chem. Int. Ed. Engl. 1996 35 729.224 R. Sustmann S. Tappanchai and H. Bandmann J. Am. Chem. Soc. 1996 118 12 555. 225 A. K. Ghosh P. Mathivanan and J. Cappiello Tetrahedron Lett. 1996 37 3815. 226 J. Howarth and K. Gillespie Tetrahedron Lett. 1996 37 6011. 227 K. Ishihara H. Kurihara and H. Yamamoto J. Am. Chem. Soc. 1996 118 3049. 228 P. A. Grieco M. D. Kaufman J. F. Daeuble and N. Saito J. Am. Chem. Soc. 1996 118 2095. 229 P. Metz D. Sdng and B. Plieker Tetrahedron Lett. 1996 37 3841. 230 L. Garnier B. Plunian J. Mortier and M. Vaultier Tetrahedron Lett. 1996 37 6699. 231 J. M.D. Fortunak J. Kitteringham A. R. Mastrocola M. Mellinger N. J. Sisti J. L. Wood and Z.-P. Zhuang Tetrahedron Lett. 1996 37 5683. 232 S. Paul R. Roy S. N. Suryawanshi and D. S. Bhakuni Tetrahedron Lett. 1996 37 4055. 233 H. Schlessinger and C.P. Bergstrom Tetrahedron Lett. 1996 37 2133. 234 C. D. Gabbutt B. M. Heron J. D. Hepworth and M.M. Rahman Tetrahedron Lett. 1996 37 1313. 235 C. K. McClure K. J. Herzog and M.D. Bruch Tetrahedron Lett. 1996 37 2153. 236 J. M. Bartolome� M. Carmen Carreno and A. Urbano Tetrahedron Lett. 1996 37 3187. 237 M.-J. Arce A. L. Viado Y.-Z. An S. I. Khan and Y. Rubin J. Am. Chem. Soc. 1996 118 3775. 238 G. Stork F. West H. Y. Lee R. C. A. Issacs and S. Manabe J. Am. Chem. Soc. 1996 118 10 660. 239 C. D. Dzierba K. S. Zandi T. Mo� llers and K. J. Shea J. Am. Chem. Soc. 1996 118 4711. 240 B. M. Trost and Y. Li J. Am. Chem. Soc. 1996 118 6625. 241 M. F. Semmelhach and H.-G. Schmalz Tetrahedron Lett. 1996 37 3089. 242 M. Bamba T. Nishikawa and M. Isobe Tetrahedron Lett. 1996 37 8199. 243 S.-S.P. Chou and C.-H. Hsu Tetrahedron Lett. 1996 37 5373. 244 E. J. Sandoe G. R. Stephenson and S. Swanson Tetrahedron Lett. 1996 37 6283. 245 D. Llerena C. Aubert and M. Malacria Tetrahedron Lett. 1996 37 7027. 246 J. Cossy and S. BouzBouz Tetrahedron Lett. 1996 37 5091. 247 H. Nemoto M. Shiraki N. Yamada N. Raku and K. Fukumoto Tetrahedron Lett. 1996 37 6355. 248 M. E. Jung Y. M. Cho and Y. H. Jung Tetrahedron Lett. 1996 37 3. 249 H. Haigawara and M. Kato Tetrahedron Lett. 1996 37 5139. 250 S. Nara H. Toshima and A. Ichihra Tetrahedron Lett. 1996 37 6745. 251 J. Barluenga A. A. Trabanco J. Flo� rez S. Garcý� a-Granda and E. Martý� n J. Am. Chem. Soc. 1996 118 13 099. 252 A. P. Kozikowski G. Campiani L.-Q. Sun S. Wang A. Saxena and B. P. Doctor J. Am. Chem. Soc. 1996 117 Aliphatic and alicyclic chemistry 118 11 357.253 M. Lautens R. Aspiotis and J. Colucci J. Am. Chem. Soc. 1996 118 10 930. 254 M. Harmata S. Elomari and C. L. Barnes J. Am. Chem. Soc. 1996 118 2860. 255 (a)H.M.L. Daves G. Ahmed and M. R. Churchill J. Am. Chem. Soc. 1996 118 10 774; (b)H.M.L. Davies and B. D. Doan Tetrahedron Lett. 1996 37 3967. 256 B. M. Trost and R. I. Higuchi J. Am. Chem. Soc. 1996 118 10 094. 257 J. H. Rigby V. De Sainte Claire and M.J. Heeg Tetrahedron Lett. 1996 37 2553; J. H. Rigby and P. Sugathapala ibid. 5293; J. H. Rigsby M. M. Niyaz and P. Sugathapala J. Am. Chem. Soc. 1996 118 8178. 258 S. S. Swindell and W. Fan Tetrahedron Lett. 1996 37 2321. 259 J. D. Winkler S. K. Bhattacharya and R. A. Batey Tetrahedron Lett. 1996 37 8069. 260 I. Hanna T. Prange� and R.Zeghdoudi Tetrahedron Lett. 1996 37 7013. 261 M. T. Crimmins S. Huang and L. Guise-Zawacki Tetrahedron Lett. 1996 37 6519. 262 C.-J. Li D.-L. Chen Y.-Q. Lu J. X. Habberman and J. T. Mague J. Am. Chem. Soc. 1996 118 4216. 263 I. Sato Y. Akahori K.-I. Iida and M. Hirama Tetrahedron Lett. 1996 37 5135. 264 M. Eckhardt and R. Bru� ckner Angew. Chem. Int. Ed. Engl. 1996 35,1093. 265 M. E. Bunnage and K. C. Nicolaou Angew. Chem. Int. Ed. Engl. 1996 35 1110. 266 C. Z. Liu and P. W. Rabideau Tetrahedron Lett. 1996 37 3437. 267 T. Kawase N. Ueda H. R. Darabi and M. Oda Angew. Chem. Int. Ed. Engl. 1996 35 1556. 268 H. Higuchi N. Hiraiwa S. Kondo J. Ojima and G. Yamamoto Tetrahedron Lett. 1996 37 2601. 118 Peter Quayle 119 Aliphatic and ali

 



返 回