首页   按字顺浏览 期刊浏览 卷期浏览 Mild Therapeutic Hypothermia for Postischemic Vasoconstriction in the Perfused Rat Liver
Mild Therapeutic Hypothermia for Postischemic Vasoconstriction in the Perfused Rat Liver

 

作者: Harvey Zar,   Koichi Tanigawa,   Young‐Myeong Kim,   Jack Lancaster,  

 

期刊: Anesthesiology  (OVID Available online 1999)
卷期: Volume 90, issue 4  

页码: 1103-1111

 

ISSN:0003-3022

 

年代: 1999

 

出版商: OVID

 

关键词: Chemiluminescence;hypoperfusion;no‐reflow phenomenon;reactive oxygen species.

 

数据来源: OVID

 

摘要:

BackgroundMild hypothermia, a promising therapy being evaluated for various clinical situations, may suppress the formation of reactive oxygen species during reperfusion and may ameliorate microcirculatory perfusion failure (the “no‐reflow phenomenon”).MethodsIsolated rat livers underwent 30 min of perfusion, 2.5 h of ischemia, and 3 h of reperfusion. The temperature was maintained at 34 [degree sign]C (mild hypothermia, n = 5) or 38 [degree sign]C (normothermia, n = 6) for all three periods by perfusion of a modified Krebs Henseleit solution, air surface cooling, or both. A third group of livers was normothermic before and during ischemia and mildly hypothermic during reperfusion (reperfusion hypothermia, n = 6). Control livers had 3 h of perfusion at normothermia. Chemiluminescence (a measure of the generation of reactive oxygen species) and hepatic vascular resistance were monitored simultaneously to evaluate the effect of temperature on the formation of reactive oxygen species and the development of no reflow. Also measured were thiobarbituric acid reactive species and lactate dehydrogenase, as indicators of oxidative stress and cell injury.ResultsMild hypothermia decreased formation of reactive oxygen species and postischemic increases in vascular resistance. Reperfusion hypothermia also decreased postischemic increases in vascular resistance, but not as effectively as did mild hypothermia. Levels of thiobarbituric acid reactive species were lower for reperfusion hypothermia than for mild hypothermia at only 0 and 30 min of reperfusion. Lactate dehydrogenase was significant only at 0 min of reperfusion for the normothermic group. Oxygen consumption did not change.ConclusionThe prevention of hepatic vascular injury by suppression of oxidative stress may be an important protective mechanism of mild hypothermia.

 

点击下载:  PDF (6736KB)



返 回