首页   按字顺浏览 期刊浏览 卷期浏览 Reduced dynamical models of nonisothermal transitional grooved-channel flow
Reduced dynamical models of nonisothermal transitional grooved-channel flow

 

作者: R. A. Sahan,   A. Liakopoulos,   H. Gunes,  

 

期刊: Physics of Fluids  (AIP Available online 1997)
卷期: Volume 9, issue 3  

页码: 551-565

 

ISSN:1070-6631

 

年代: 1997

 

DOI:10.1063/1.869218

 

出版商: AIP

 

数据来源: AIP

 

摘要:

Reduced dynamical models are derived for transitional flow and heat transfer in a periodically grooved channel. The full governing partial differential equations are solved by a spectral element method. Spontaneously oscillatory solutions are computed for Reynolds number Re⩾300 and proper orthogonal decomposition is used to extract the empirical eigenfunctions at Re=430, 750, 1050, and Pr=0.71. In each case, the organized spatio-temporal structures of the thermofluid system are identified, and their dependence on Reynolds number is discussed. Low-dimensional models are obtained for Re=430, 750, and 1050 using the computed empirical eigenfunctions as basis functions and applying Galerkin’s method. At least four eigenmodes for each field variable are required to predict stable, self-sustained oscillations of correct amplitude at “design” conditions. Retaining more than six eigenmodes may reduce the accuracy of the low-order models due to noise introduced by the low-energy high order eigenmodes. The low-order models successfully describe the dynamical characteristics of the flow for Re close to the design conditions. Far from the design conditions, the reduced models predict quasi-periodic or period-doubling routes to chaos as Re is increased. The case Pr=7.1 is briefly discussed. ©1997 American Institute of Physics. 

 

点击下载:  PDF (663KB)



返 回