首页   按字顺浏览 期刊浏览 卷期浏览 The effect of boron implant energy on transient enhanced diffusion in silicon
The effect of boron implant energy on transient enhanced diffusion in silicon

 

作者: J. Liu,   V. Krishnamoorthy,   H.-J. Gossman,   L. Rubin,   M. E. Law,   K. S. Jones,  

 

期刊: Journal of Applied Physics  (AIP Available online 1997)
卷期: Volume 81, issue 4  

页码: 1656-1660

 

ISSN:0021-8979

 

年代: 1997

 

DOI:10.1063/1.364022

 

出版商: AIP

 

数据来源: AIP

 

摘要:

Transient enhanced diffusion (TED) of boron in silica after low energy boron implantation and annealing was investigated using boron-doping superlattices (DSLs) grown by low temperature molecular beam epitaxy. Boron ions were implanted at 5, 10, 20, and 40 keV at a constant dose of 2×1014/cm2. Subsequent annealing was performed at 750 °C for times of 3 min, 15 min, and 2 h in a nitrogen ambient. The broadening of the boron spikes was measured by secondary ion mass spectroscopy and simulated. Boron diffusivity enhancement was quantified as a function of implant energy. Transmission electron microscopy results show that ⟨311⟩ defects are only seen for implant energies ⩾10 keV at this dose and that the density increases with energy. DSL studies indicate the point defect concentration in the background decays much slower when ⟨311⟩ defects are present. These results imply there are at least two sources of TED for boron implants (B-I): short time component that decays rapidly consistent with nonvisible B-I pairs and a longer time component consistent with interstitial release from the ⟨311⟩ defects. ©1997 American Institute of Physics.

 

点击下载:  PDF (193KB)



返 回