首页   按字顺浏览 期刊浏览 卷期浏览 Analysis of ERS-1 Synthetic Aperture Radar data from Nordaustlandet, Svalbard
Analysis of ERS-1 Synthetic Aperture Radar data from Nordaustlandet, Svalbard

 

作者: W. G. REES,   J. A. DOWDESWELL,   A. D. DIAMENT,  

 

期刊: International Journal of Remote Sensing  (Taylor Available online 1995)
卷期: Volume 16, issue 5  

页码: 905-924

 

ISSN:0143-1161

 

年代: 1995

 

DOI:10.1080/01431169508954451

 

出版商: Taylor & Francis Group

 

数据来源: Taylor

 

摘要:

Study of the Earth's terrestrial ice masses (glaciers, ice caps and ice sheets), especially the seasonal variation of different surface conditions such as dry snow, wet snow and bare ice, is of particular importance in relation to possible climatic change. Synoptic monitoring techniques using visible and near-infrared satellite imagery are severely limited by the prevalence of cloud cover in the polar regions, and winter observations are impossible as a result of the absence of solar radiation. Consequently, considerable attention is now being focused on the use of imaging radar in the study of large ice masses. In this paper, we present and interpret a time-series of C-band synthetic aperture radar images acquired using the ERS-1 satellite from the Austfonna ice cap in eastern Svalbard. Winter imagery shows little variability, most of the ice cap having a uniform and high (approximately – 3dB) backscatter attributed to ice lenses or to a large effective grain size. Summer imagery shows considerable topographically-related detail, and backscatter values typically 5 to l0 dB less than in winter, which can be explained on the basis of surface scattering from wet snow. However, the marginal areas of the ice cap show a clearly defined zone of high ( –5dB) backscatter in mid- to late-August. It is proposed that this corresponds to the bare ice zone, the high backscatter values being due to scattering from crevasses and meltwater channels, and that the inner boundary of the zone of enhanced backscatter indicates the position of the transient snow line.

 

点击下载:  PDF (2574KB)



返 回