首页   按字顺浏览 期刊浏览 卷期浏览 Collapse and Rebound of a Spherical Bubble in Water
Collapse and Rebound of a Spherical Bubble in Water

 

作者: Robert Hickling,   Milton S. Plesset,  

 

期刊: Physics of Fluids(00319171)  (AIP Available online 1964)
卷期: Volume 7, issue 1  

页码: 7-14

 

ISSN:0031-9171

 

年代: 1964

 

DOI:10.1063/1.1711058

 

出版商: AIP

 

数据来源: AIP

 

摘要:

Some numerical solutions are presented which describe the flow in the vicinity of a collapsing spherical bubble in water. The bubble is assumed to contain a small amount of gas and the solutions are taken beyond the point where the bubble reaches its minimum radius up to the stage where a pressure wave forms which propagates outwards into the liquid. The motion during collapse, up to the point where the minimum radius is attained, is determined by solving the equations of motion both in the Lagrangian and in the characteristic form. These are found to be in good agreement with each other and also with the approximate theory of Gilmore which is shown to be accurate over a wide range of Mach number. The liquid flow during the rebound, which occurs after the minimum radius has been attained, is determined from a solution of the Lagrangian equations. It is shown that an acoustic approximation is valid even for fairly high pressures, and this fact is used to determine the peak intensity of the pressure wave as it moves outwards at a distance from the center of collapse. It is estimated in the case of typical cavitation bubbles that such intensities are sufficient to cause cavitation damage.

 

点击下载:  PDF (669KB)



返 回