首页   按字顺浏览 期刊浏览 卷期浏览 Photorefractive effects and light‐induced charge migration in barium titanate
Photorefractive effects and light‐induced charge migration in barium titanate

 

作者: Jack Feinberg,   D. Heiman,   A. R. Tanguay,   R. W. Hellwarth,  

 

期刊: Journal of Applied Physics  (AIP Available online 1980)
卷期: Volume 51, issue 3  

页码: 1297-1305

 

ISSN:0021-8979

 

年代: 1980

 

DOI:10.1063/1.327824

 

出版商: AIP

 

数据来源: AIP

 

摘要:

We propose a new theoretical model for the light‐induced migration of charges which mediates the ’’photorefractive effect’’ (light‐induced refractive index change) in barium titanate and other crystals. We also present experimental results of various effects of this light‐induced charge migration in a single‐domain crystal of barium titanate, specifically, (1) energy transfer between two intersecting optical beams, (2) optical four‐wave mixing and optical‐beam phase conjugation, (3) erasure of spatial patterns of photorefractive index variations, and (4) photoconductivity. The theoretical model predicts the observed dependences of these effects on (1) beam intensities, directions, and polarizations, (2) crystal orientation, and (3) on an externally applied dc electric field. Time dependences of transients as well as steady‐state magnitudes are predicted. In this model, identical charges migrate by hopping between adjacent sites, with a hopping rate proportional to the total light intensity at the starting site. The net hopping rate varies with the local electric potential that is calculated self‐consistently from the charge migration pattern. In barium titanate the charges are positive with a density of (1.90.2) ×1016cm−3at 514 nm. The origin of the charges and sites is at present unknown. The hopping rate constant determined from optical beam interactions is used to predict the observed photoconductivity of 1.3×10−10cm &OHgr;−1 W−1at 514 nm.

 

点击下载:  PDF (765KB)



返 回