首页   按字顺浏览 期刊浏览 卷期浏览 Crystal structure of disodiumtrans-disulphitodiamminepalladate(II) hexahydrate
Crystal structure of disodiumtrans-disulphitodiamminepalladate(II) hexahydrate

 

作者: M. V. Capparelli,  

 

期刊: Journal of the Chemical Society A: Inorganic, Physical, Theoretical  (RSC Available online 1969)
卷期: Volume 1, issue 1  

页码: 260-265

 

ISSN:0022-4944

 

年代: 1969

 

DOI:10.1039/J19690000260

 

出版商: RSC

 

数据来源: RSC

 

摘要:

260 J. Chem. SOC. (A), 1969 Crystal Structure of Disodium trans-Disulphitodiamminepalladate(ll) Hexahydrate By M. V. Capparelli and L. N. Becka,*t Facultad de Ciencias Exactas y Naturales, Universidad de Buenos The structure of Na,[Pd(S03)2(NH,)8],6H,0 has been determined. It forms crystals of space group P 1, with and one formula weight in the unit cell. The structure was solved by Patterson methods and refined by full-matrix least-squares. There is the expected square planar co-ordination around the palladium atom, the sulphite groups being bonded through sulphur, in the trans-configuration and keeping the shape of a trigonal pyramid. Each of the sodium ions is surrounded by six atoms in a distorted octahedral co-ordination. Chains of these octahedra, sharing two edges with two neighbouring octahedra, run parallel to the b axis, the chains being connected in the other two dimensions through the oxygen atoms of the sulphite groups of the [Pd(S0,),(NH,),]2- ion.Some important distances and angles are : Pd-S, 2.294 f 0.006 ; Pd-N, 2.060 f 0.009 ; S-0, 1.483 f 0.005 A : 0-S-0.108.7 f 0.2". S-Pd-N, 90.9 f 0.3". These results are compared with the dimensions of [PdS0,(NH3),] there being a significant lengthening of the Pd-S bond, and no appreciable difference in the dimensions of the sulphite group in the [Pd(S03),(NH,),]2- ion. Aires, Argentina, and Escuela de Quimica, Universidad Central de Venezuela, Caracas, Venezuela a = 8.92 f 0.02, b = 6.52 f 0.02, c = 7.07 f 0.02 A, u = 73.5 f 0.2". p = 102.5 f 0*2", y = 81.6 f 0.2"; As part of a programme of studies on the structure of the sulphite ion and on co-ordination compounds of this group,1*2 we undertook the structure determination of trms-N%[Pd (SO,) ,(NH3) 2] ,6H20.We chose to study this compound in order to compare the bond length and angles within the tram-[Pd(SO3),(NH,),]2- ion with the corresponding magnitudes observed in [PdSO,(NH,)J . The latter compound has a Pd-S bond of 2.245 A, and the S-0 bonds are shorter than in the sulphite ion. We wanted to establish whether replacing one ammine group by a second sulphite group, trans to the first, would weaken the Pd-S bond and how this change would affect the dimensions of the complexed sulphite group. EXPERIMENTAL Crystals prepared by Earwicker's method were identified The t Present address : Facultad de Ciencias, Escuela de Quimica, M.A. Spinnler and L. N. Becka, J . Chem. SOC. ( A ) , 1967, by their infrared spectra4 and chemical analysis. Universidad Central de Venezuela, Caracas, Venezuela. 194. crystals were stable in air when exposed to X-rays. They are colourless needles, the needle direction coinciding with the G axis of the unit cell. Crystal Data.-H,,N,Na,O,,Pd, M = 454.66. triclinic, a = 8-92 f 0.02, b = 6.52 f 0.02, c = 7.07 &- 0.02 A, a = 375.6 f O-8%13; D, (by flotation) = 2.01 f 0.04; 2 = 1, D, = 2.010, F(000) = 228. Space group P 1 or P 1, struc- ture analysis proceeds satisfactorily in P 1. Cell constants were determined from - K,, splitting of high-angle reflections obtained for the hk0-4 and h0Z levels by the equi-inclination Weissenberg method using Cu-K, radiation.The cell constants were adjusted by the least-squares method of Alcock and Sheldri~k.~ In order t o have a unit cell oriented in accordance with the recommendations of the Commission on Crystallographic data,6 it is sufficient to transform the axis by the matrix OOiliOOlOlO so that S. Baggio and L. N. Becka, Chem. Comm., 1967, 506. G. Newman and D. B. Powell, Spectmchim. Acta, 1963, N. W. Alcock and G. M. Sheldrick, Acta Cryst., 1967, 25, 35. 6 0. Kennard, J. C. Speakman, and J. D. H. Donnay, Acta 73.5 & 0*2O, p = 102.5 f 0-2", y = 81.6 f 0.2", u = 3 G. A. Earwicker, J . Chem. Soc., 1960, 2620. 19, 213. Cryst., 1967, 22, 445.Inorg. Phys. Theor. 261 u2 = -c, b, = --a, c2 = b, a2 = 180 - y, p2 = 180 - a, and The data used to solve and refine the structure were collected with Cu-K, radiation using crystals with maximum cross-section 0.07 x 0.07 mm., and length 0.44 mm., mounted along the c axis.We obtained 1213 independent reflections of measurable intensity from mechanically integrated equi-inclination Weissenberg photographs of layers hk0-5. The region covered represented 61% of the limiting reflection hemisphere of sin O/A = 0.65,93% of these reflections were of measurable intensity. Y2 = P. atoms in the unit cell. Although oxygen atoms could not be distinguished from nitrogen atoms on the basis of peak heights, the nitrogen atom could be located unambiguously from chemical requirements. Structure factors were calculated including all but the hydrogen atoms, using form factors listed in ref.8 for palladium, sulphur, and sodium, and those from ref. 9 for nitrogen and oxygen. For this calculation we assumed values for the atomic isotropic temperature factors: Pd, 0.4; S, 1-2; Naf, 1.8; 0, 2.1; and N, 2.1 A2. Practically all the signs At this stage R was 154%. TABLE 1 Fractional co-ordinates, with their standard deviations in parentheses, and orthogonal co-ordinates (A) 104, X/n l o 4 . Y / b 104. z / c X‘ Y‘ 2’ Pd 0 0 0 0.0 0.0 0.0 S 1942 (2) -2535(3) - 2 7 1 (4) 1.7634 - 1.4560 -0.1769 Na 3844(4) 2834 (6) 4293(7) 2.6015 3.2105 2.8018 1564(7) - 2645(10) - 2385( 13) 1.8189 - 2.0020 - 1.5566 2087(8) - 47 13 (9) 1 197 ( 12) 1.621 1 - 2.5625 0.7812 O(1) 3484(7) - 1877(12) 122(13) 3.0516 - 0.7480 0.0796 O(2) 1607 (9) 1514( 13) 4804( 15) 0-5337 2,1620 3.1353 O(3) 4064(9) - 4923( 13) 6570( 14) 2-3766 - 1.3625 4-2879 W(1) 4.8055 5232(9) - 358( 12) 7363( 14) 3.2612 W(2) 1.9258 930( 11) %28( 13) - 1434( 17) 1.0845 1.4809 - 0.9360 Y(3) The orthogonal co-ordinates X’, Y’, and 2’ are derived from the fractional co-ordinates by the relations: X’ = a sin yx - (cos /3*/c* sin @)z Y‘ = a cos yx + by +- G cos uz Z’ = (l/C*)Z W represents a water molecuIe.TABLE 2 Thermal parameters with their standard deviations (Az) lo5 - P11 lo5 Pz2 lo5 * P33 lo5 * P l 2 lo6 * PI3 Pd 366 ( 10) 581(19) 719(32) -156(8) 213(10) S 427(22) 792(42) 872( 78) - 79(22) 98(26) Na 762(44) 1351(84) 1092(130) - 85(48) 226(62) 858 ( 83) 8 1 1 ( 1 3 1) 1 3 1 6 (236) -7(81) 145(97) 520(73) 1970(175) 1682(254) -455(92) 206(94) 726(79) 1330(143) 813(236) 164(82) 242(91) O(1) 0 (2) O(3) W(1) 969(96) 1975(192) 1569(268) -462(108) 20(111) W(2) 857(88) 2244(198) 1308(263) -61(104) 375(107) W(3) 925(89) 1749(174) 1444(269) -275(99) 368(108) N 1284(122) 1175(168) 2066(329) -913(119) 1167(162) The anisotropic temperature factors are in the form ~ X P - (h2Pii + k2pzz + z2P33 + 2hkP12 + 2klPaa + 2W313) and isotropic temperature factors B, are calculated from (4/3)XCCBij(Zj. isj) where i , j = 1,3.10‘ Pa3 -214(13) - 266(36) - 367( 71) - 336( 122) -3(119) - 807( 160) - 745( 162) - 655( 153) - 626(167) 186( 167) I3 1.00 1.33 2-06 1-89 2-18 2.32 3.13 2.63 2-50 2.55 Lorentz and polarization corrections were applied and the individual layers were correlated 7 with the set of structure factors of the O M , hOZ, hhl, and I& levels which were re- corded on a precession camera, using Mo-K, radiation.The intensities were measured with a microdensitometer. Since the linear absorption coefficient is rather large for C!L-K, radiation, p = 116 cm.-l, we applied an absorption correction to the data, assuming that the crystal is of rectangular shape and bound by (100) and (010) type faces. The discrepancy index between equivalent reflections is 50;,, giving an indication of the experimental error of the data. Structure Determinutiow-A three-dimensional Patterson synthesis was computed using all the independent reflections of observable intensity. The resulting map was readily interpreted, providing a set of approximate co-ordinates for all the non-hydrogen atoms.Furthermore, this map corresponded well to a centrosymmetrical arrangement of ’ W. C. Hamilton, J. S. Rollet, and R. A. Sparks, Acta Cryst., 1965, 18, 129. calculated for the structure factors were positive. The trial structure was checked computing a three-dimensional Fourier synthesis with the calculated signs and the observed structure factors. With the trial structure we started a sequence of full- matrix least-squares refinements allowing for the simul- taneous variation of all the co-ordinates, individual isotropic temperature factors and a different scale factor for data from each of the hk0--5 levels. After three cycles, the shifts were less than a fifth of the estimated standard deviations of the parameters and R dropped to 0.081 and IZ’ (= XwA2/CwFo2) to 0.096.We then started a sequence of full-matrix refinements with anisotropic temperature factors and with just one overall scale factor as parameters of the refinement. Convergence was reached after two cycles, R and R’ being 0.065 and 0.078 for all the independent reflections of measurable intensity. When unobserved 8 D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 17. ‘ International Tables of X-Ray Crystallography,’ voi. 111, Kynoch Press, Birmingham, 1962.262 J. Chem. SOC. (A), 1969 TABLE 3 Observed and calculated structure factors The letter U following the k value indicates an unobserved reflection for which F,, is estimated assuming an intensity equal to Values bounded by parentheses correspond to reflections covered half the lowest measurable intensitv in that region of the film.by the beam stop; 75 k L -0 L O 2 0 3 0 4 0 9 0 b 0 7 0 9 0 10 0 -10 I -9 1 -8 I -7 I U -6 I -5 I - 4 1 -3 I -2 I -I I 0 1 1 1 2 1 1 1 4 1 5 1 b 1 7 1 8 1 9 1 10 I II I -9 2 -8 2 -7 2 -6 2 -5 2 -4 2 - 3 2 -2 2 -1 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 LO 2 I 1 2 -9 3 -8 3 -I 3 -6 3 -5 3 -4 3 - 3 3 -2 3 -I 3 0 3 I 3 2 3 3 3 4 3 5 3 b 3 7 3 8 3 9 3 10 3 I 1 3 -8 4 -7 4 -. 4 -5 4 4 4 -3 6 -1 4 0 4 I 4 2 4 3 4 * 4 s 4 0 4 7 4 8 4 9 4 LO 4 -b 5 -5 5 - 4 s -3 5 -2 5 -1 5 0 5 1 5 2 5 3 5 4 5 s 5 b 5 1 5 8 5 9 5 10 s -8 b -4 b -3 b -a b -1 b O b i b m o -a 4u lOFo 275 22b -80 5 ) 556 4 0 2 104 153 123 260 8tl 275 276 34 296 193 410 453 360 245 345 50 I 562 84 238 48 472 438 I60 I04 137 lb2 198 248 324 82 154 3 8 V 30b b24 185 -b5 bb 361 4 5 1 673 I 4 9 213 277 234 25u 140 LO 55 340 2 3 1 137 12 I 140 53b 391 23b 167 301 461 546 297 222 43 2bO 199 2 3 1 125 32 54 253 358 193 176 32 359 b30 I 9 3 403 4 8 206 446 174 I 3 9 189 143 299 I 1 5 60 39 1 365 89 I08 IS7 434 457 129 I01 52 359 31 1 233 I29 78 12b 139 234 331 I 3 0 I 1 5 I 3 9 iac 1; represents 1.lOFc 357 I 78 - 1 3 50 b25 394 87 141 112 234 91 235 257 31 2 74 171 525 s 7 3 352 1 b5 3bb *I8 715 2 235 28 *a5 430 152 99 117 105 178 2 35 302 66 138 392 308 777 197 -7 72 371 461 773 131 208 248 225 2 32 125 57 b3 1b3 330 205 112 116 13b bob 39 3 20b 146 287 485 570 205 6 254 I86 206 I 3 5 44 5s 248 356 I 69 I48 12 338 b9b 173 398 4 1 I 9 3 422 I52 125 184 127 277 100 124 309 331 *I 85 120 41s 451 I 0 4 77 3 I 360 305 20 7 I14 91 113 111 203 310 121 101 !21 261 h k lOFo 2 b 3 b 4 b 5 b b b l b I b 9 6 - 3 7 -2 7 - 1 7 C l 1 1 2 7 3 1 4'- 1 5 7 b 7 7 7 1.1 -* -7u - 5 -7 - 4 -7 - 3 - 7 -2 - 7 - 1 - 7 c -1 1 - 7 -8 - b -7 -* -h -b - 5 -0 - 4 - b - 3 -b - 2 -b - 1 -b C - b I -6 2 -6 3 -b 4 -b -9 -5u - 8 - 5 -7 - 5 -6 -5 -4 -5u -3 -5 -2 - 5 - 1 -5 c -5 I -5u 2 -5 3 -5 4 -5 5 - 5 b -5 -1c -4 - 9 - 4 -8 -4u -7 -4u -6 -4 - 5 -4 - 4 -4 - 3 -4U - 2 -4u - 1 - 4 c - 4 1 - 4 2 -4 3 -4u 4 -4 5 - 4 b - 4 7 -4 -11 -9u -1c -3 -9 -3 -8 -3 -7 -3 -b -3u -5 - 3 -4 - 3 - 3 - 3 -1 - 3 - 1 - 3 c - 3 1 - 3 2 - 3 3 - 3 4 - 3 5 -3u 6 - 3 7 - 3 8 - 3 - I 1 -2u -1c -2 -9 - 2 -I -2 -b - 2 -s -1 -4 - 2 - 3 -2 - 2 -2 -1 -2 c - 2 1 - l u 2 -2 3 -2 4 - 2 5 -2 b - 2 7 - 2 9 - 2 -11 - 1 -10 -1 -5 - 1 -5 L5 -1 -2, a - 2 203 375 1 7 2 b 2 20 I 189 2 75 I54 84 zco 242 L 33 14c 113 22c 267 239 1 b t 63 45 9c 2c9 25c 149 119 ice I 9 8 I0C 218 96 YC 279 211 34 7 IZC 8 3 132 19 I 255 158 56 219 d5C 346 1 9 4 -77 L5C 335 z c 7 35) -71 223 279 215 197 67 262 2 0 5 b9 73 390 419 312 - b S -08 311 512 446 212 - 78 2 70 229 234 99 38 1 8b 245 2C7 236 0 3 24 I 463 36C 402 192 192 508 4bC 97 192 79 3cc 3c3 103 4 5 189 255 381 V l 168 360 3ss TIC 45 7 2 > u 52 125 4c7 345 225 2 39 I 1 2 31C 1C3 8 1 9 5 oa i e s 1OFc I 8 4 356 259 8 1 199 17b L4b 111 91 2CO 214 21 b 126 99 204 244 210 149 bb 76 9 1 I t 0 231 147 I 1 4 I c4 165 179 1 96 105 93 286 276 332 lC7 60 124 I b9 244 155 36 205 262 34b 278 -14 220 3CO 193 328 -12 193 255 207 87 2C5 2c5 a9 b5 314 4c7 3c5 -10 -32 3C I 517 438 204 -10 2 36 218 222 107 94 196 251 1% 220 b 231 490 349 408 175 115 525 467 96 173 2 3 281 273 104 5b 91 I80 2 5 5 44b 109 I 7 1 316 34 1 825 491 218 b8 101 402 328 2 2 i 208 102 288 LO1 19) 79 89 I i n h k lOFo 1OFc - C - 1 ZbP 154 - 1 - 1 40C 380 -b - 1 453 4hZ - 5 -I 25b d42 -4 - 1 -17s -136 - 3 - 1 51C bI1 -1 -1 51C 101 C - 1 451 5b5 2 - 1 514 5 f b -2 - 1 241 260 1 - 1 - 3 5 3 - 3 1 5 3 - 1 1 5 3 256 4 - 1 399 4C2 5 - 1 4 2 5 6b5 b - 1 1CC LC3 7 - 1 148 13n 8 - 1 2 0 ) 191 9 - 1 157 142 -11 C 214 235 -1c c 188 2c1 -9 C 339 3 3 1 - 8 CU -72 -1b - 7 CU b9 03 -b c 409 4 L 8 -5 0 4 0 3 4U4 - 4 C 471 498 - 3 C 125 126 - 2 c - 1 1 2 -96 I C c 6731 I C 5 5 1 739 2 c 286 d 8 4 3 C 319 311 4 C 451 4bb 5 0 239 242 b C 3Cl 313 7 C U 16 47 9 C 227 208 IC c 2 1 s 2c2 -1c 1 201 194 - 5 I 212 281 -? 1 13% 121 -b 1 -204 -154 -5 I 38C 405 -4 1 457 5CO -3 1 655 858 -2 1 4 3 3 499 - 1 1 -2bl -23b c I 202 I92 1 1 654 853 2 1 569 b56 3 1 438 479 4 1 l l h 1C5 s 1 -85 -44 b 1 395 412 7 1 2SC 276 I ) 1 189 178 9 1 159 I40 IC 1 LIE 105 - l C 2U 4 3 h l - 9 1 I 0 1 1 c 5 -t 2 264 255 - 7 2 328 328 -b 2 13e 134 -5 2 3r9 318 -4 2 126 119 -3 2 423 416 -2 2 561 b9b - 1 2 359 390 C 2 134 l5U 1 2 2 5 1 235 2 2 131 140 3 2 532 bC2 4 2 325 309 C 2 116 I 7 8 7 2 262 255 8 2 318 38C 5 2 147 145 LC 2 111 I 1 3 - 8 3 14h 130 -7 3 271 283 -6 3 389 380 -5 3 301 276 -4 3U 6 6 69 - 3 3 2h3 239 - 2 3 -84 -1b - 1 3 591 b55 c 3 3 4 1 334 1 3 305 3C8 2 3 4bb 471 3 3u s5 22 4 3 429 426 5 3 4 C 3 417 b 3 125 129 1 3 309 2 9 3 8 3 14M 141 5 3 17C 16& 1 C 3 234 2C9 -1 4 l b l 142 -b 4 25C 237 -4 4 331 313 - 2 4U b s b l c 4 343 332 I 4 556 5hb 2 4 139 I 4 0 3 4 I99 2cu 4 4 2b7 215 5 4 301 3Cl 7 4U 1 7 99 9 4 148 I40 10 4 187 182 - 7 5u 45 81 ( - 1 c 5eb I 8 c i i e l C 5 - a I 253 247 5 J 198 191 -5 4 3c3 zes - 3 4u -a9 -9 - I 4 4 8 1 4 e 3 6 4 29e 491 a 4 12c i i \ ?$ k lOFo lOFc -6 'IU -bC - 2 8 - 5 5 I74 I t 1 -4 5 4 d l d 3 b - 3 5 e19 430 - 2 5 222 2CO -1 5 c 7c 80 C 5 2 b S 155 I 5 3 z n 3 d s 3 5 195 21s 4 5u - 7 1 - 4 5 5 233 223 h 5 310 3 C 5 7 5 2C1 L P B h 5 188 110 5 5u 5e 89 -b b l c l 142 - 5 hU 52 71 -4 bU b l 33 -3 b 305 304 - 2 b 316 318 -1 h 241 ?4b C 6 IC7 $ 2 1 bU T I ) 24 2 6 177 Ib6 3 b 3 8 t 382 4 b 2C9 2C5 5 b 192 112 h t 1CC l C 3 1 t 219 1 c 4 - 3 1 92 L13 -2 7 IC4 I05 -I 1 470 259 C 7 I t 3 147 1 7 I79 l a 0 2 7 I 2 4 121 3 7 151 I64 4 7 316 3C7 5 7 24c L C Y 6 1 124 110 v 1 1 3 4 I29 C 8 149 1b7 1 8 243 262 2 8 1C7 113 3 8 145 I50 4 8 119 134 L.2 2 5 3CC 213 e 6 ~ 3 r 251 - 5 -1 119 1 J l -4 -1 183 19C - 2 -1 15C I52 rl -7 4 1 54 c - 7 LC2 130 -8 -6 11H I91 -7 - h 184 182 -b - b 187 lM3 - 5 -0 106 ICS -4 - b 5 3 10 -3 -t 219 2Yb -2 -6 192 193 -1 -b 2 4 7 265 C -b I 6 4 111 I -6U 42 5L 2 -6 l l b Ib2 3 -b 119 143 -9 - 5 120 109 - 8 - 5 89 ' r l -0 -5 355 330 -4 -5 IdC I27 -3 -5 176 172 -2 -5 24C 235 -I -5 331 324 I - 5 146 141 2 - 5 9C bV 3 -5 187 175 4 - 5 2C8 21b 5 - 5 124 1 J b - 1 C - 4 2bC 263 -9 -4 219 215 -8 - 4 I I b 121 -7 - 4 144 I54 -6 - 4 166 Lb8 -5 -4 4 b l 448 - 4 -4 266 228 -3 -4 134 123 -2 - 4 165 154 -I - 4 251 215 C -4 La8 215 1 - 4 334 ?23 2 - 4 54 43 3 -4 193 185 4 -4 2S8 257 5 - 4 2C8 2C3 6 - 4 I 7 8 193 - 1 1 - 3 b9 b4 -1c -3 222 211 - 9 -3 271 2e7 -8 -3 306 3%0 -7 - 3 186 18s -b - 3 - l I C -132 - 5 -3 i d 3 247 - 4 -3 $14 291 -3 - 3 517 535 -2 -3 372 170 - 1 -3u 4 3 39 c -3 2c2 180 I - 3 4CC 390 2 - 3 348 348 3 -3 3 C l 3C5 5 - 3 I85 1113 b -3 17b 190 7 - 3 183 195 -11 -2 148 I 5 1 -1c - 2 1s 15 -3 - I i n 7 159 -7 - 5 251 289 -5 -5 188 r e 8 c -5 15e 151 4 -3u 53 i n h k -6 -2 -1 -2 -1 -2 - b -2 -s - 2 - 4 - 2 - 1 - 2 - 2 - 2 -1 - 2 c - 2 1 - 2 2 -2 3 - 2 4 -2 * -2 b -2u 1 -2 8 - 2 -11 -I -1c - 1 -5 - 1 - c -1 - r - 1 -* -I -s -I - 4 -I - 3 -I - 2 -I -1 -1 c -1 I - I 2 - I 3 - 1 4 .- 1 9 - 1 b - 1 7 -1 I -1 0 - 1 -11 c -1c c -9 c -1 c -6 C -I c -4 c - 3 c - 2 c 1-1 c c c 1 c 2 c 3 c 4 c s c h C 7 c B C o c -1c 1 -5 1 - 7 1 -1 I U -I 1 - 4 1 - 3 1 - 2 1 - 1 1 I 1 2 1 3 1 4 1 5 1 4 1 1 1 8 1 9 I U 10 1 - L O 2u -5 2 -t 2 -7 2 -6 2 -5 2 -4 2 - 3 2 - c 2 -I 2 c z 1 2 2 2 3 2 4 2 5 2 b 2 7 2 c 2 5 2 I C 2 -5 3 - 1 3 -6 3 -I Y - 4 3 - 3 3 - 2 3 -1 3 c 3 I 1 2 3 3 3 4 3 5 3 4 3 7 .3 8 1 5 3 - e c - 8 I -e 3u lOFo 141 215 2b5 1 3 3 22s 531 b12 55 174 4 3 * 216 29c I2b 5 1 204 I 8 t 14C 144 - b4 38C 4 0 3 4 b l 177 155 4 Z C L l I 473 1 7S 225 234 I 94 211 197 182 3Cl 19c 143 12c 13c 543 137 219 -1b3 525 4b5 12 I 412 I 9 3 39 3 3c5 PI 90 I4C 133 279 365 135 4 t 224 1b9 54c 35 7 254 555 293 31t -103 38C 3C8 3 0 t 46 116 Y5 92 2b5 325 33 1 t b I I P 4 c c 5c3 74c -159 34 3 2ce 211 4b4 6 b 91 3 5 t 11b 24 7 51 11 .+ 5 2 8 1 218 357 372 bC 412 3c 3 175 ,4c 3 5 c 42L 372 3 1 1 33e z3e z5e i b e 37c IZF ee 151, e 3 l b 5 259 10Fc I44 1 d O a10 314 I 4 0 2c9 5bq 210 7 7b 42 1 b l 44 I 2C8 297 I I* P 278 21b Leo 130 141 -31 414 412 4CI 4 9 1 163 148 428 20s 5b5 17) 3bO 204 244 I 9 0 I19 152 204 I 8 3 2M6 141 11b 342 1 3 3 140 3c4 - 5 b 394 1 bb4 490 128 449 3ee 3c5 79 1 C l 146 I21 2114 398 135 3b 232 I70 3 19 2c3 b 5 2 3C I 138 -60 383 304 312 99 2 3 122 32 8s 261 321 33c 3b I 2 7 4Gb 580 954 -53 3c7 210 287 5 c 5 10 89 3 rc 116 25 I 64 73 47 3cs 2c I 356 383 s3 4 3 1 2cc I t 9 41 1 b 44 6 365 148 e7 110 2 4 3 l e a 187 661 3ez h k 10Fo 1 10 J I D 4 -8 4 135 -7 w 4 4 -. 4 211 - 5 298 - 4 4 d48 - 1 4 291 -2 b ea -I 4 2b9 I 4 223 C b 315 2 4 176 8 4 347 4 6 225 s 4 43b b 4 I 5 4 I 4 I l l I C 4 I45 -1 5 bC -b 5 9 3 - 5 5 8C - 4 3 29c - 3 5 351 - 2 5 121 -1 5 lb5 C 5 271 I 9 326 2 5 4 s 9 1 5 2IC 4 5U 52 6 5 L I t 1 5 2re I 5 141 I 4 i 2 e e 4 I I I 6 I i s c 5 5 74 -5 bU 4 1 - b 6 199 - 4 0 131 -1 6 I 9 3 -2 b 313 -1 b 21c C B Ib I b 212 2 6 211 3 b 291 * 6 212 6 6U 5C b b I 4 2 7 4 253 I 0 2 c t -4 7 110 -1 7u 38 -2 7 231 - 1 7 Ire C 7 255 I 7 154 2 7U 4 b 3 7 2 1 t 4 1 2 1 7 5 7 256 b 7 152 1 7 ' b 7 -1 8 123 c 180 1 8 153 2 I I69 3 8 19 4 t I 4 C I 8 3 -1 -b 16b -b - b 125 - 5 -6U 55 -4 -6 I 3 2 - 3 -* I82 - 2 -6 21b -1 - b 102 0 -6U 4 t 1 -6 lC9 -5 -5U 3b -1 - 5 104 - ? -5 143 -6 -5 PIC - 5 - 5 2bC - 4 - 5 15h -1 - 5 195 -2 -5 212 -1 -5 181 c - 5 I I t 1 -5 144 2 -5u 5s 3 -5 18P -10 - 4 ic1 -0 -4 139 -I - 4 IbC -1 -4U b t - ' b - 4 201 -5 - 4 411 - 4 - 4 2c2 - 3 - 4 zcc - 2 - 4 (It - I - 4 195 0 - 4 317 I - 4 I 8 3 2 .- 4 122 1 - 4 124 4 - 4 127 C - 4 23C - 1 0 - 3 129 - 9 - 3 2b2 - t - 9 29c -1 - 3 2Cl - 6 - 3 i l C -s - 3 c s - 4 - 3 4 1 3 - 3 -1 i 2 t - 2 - 3 IC? - 1 - 1 255 LOFc 2CI I 1 5 4s ZCb 1c2 119 1 C I t 4 2s I 1 C I 221 3b9 348 XI 4co 151 I 3 1 119 1 I 2 179 10 9b 95 26b 1% ICeI 157 3C 2 34 3 b C 7 191 7 I d 4 192 216 147 97 2cz 48 124 I97 31s 2b5 14 ZC3 199 2 t b zco 2 154 245 r2 I 118 38 2Cb 155 2 h I 149 17 214 231 254 156 bO 137 190 110 I10 91 I 5 9 It4 I 3 0 12 I35 183 24 1 I98 71 110 59 I04 I 3 8 22 3 270 l b 3 213 Z l C 171 107 14s 71 211 1 1 1 14b 1 0 3 82 I 1 8 4c9 I 8 4 194 eb 184 3 34 182 123 I I Y 128 154 1 3 1 267 111 15b 91 3b5 2C7 9 I 2bZ l e iInorg. Phys. Theor. 263 h k lOFo 0 - 3 132 1 - 3 487 2 -B 297 3 -3U b b 4 - 3 104 5 - 3 101 b -3 2Ob -11 - 2 b7 -10 - 2 I 5 2 -9 -2U 6 5 -0 -2 191 -7 -2 443 -6 -2 iqn -5 -2 131 -4 -2 182 - I -2 I45 -2 -2 571 - 1 - 2 371 0 -2 I92 I -2 24b 2 - 2 215 1 - 2 391 4 -2 170 5 -2lr b4 L -2u 5T 7 - 2 I b 7 -11 - 1 197 -10 - 1 207 -9 - 1 9 3 -7 -1 147 -b -1 384 -5 -I 256 -4 - 1 330 - 3 - 1 400 -2 - I 345 -1 -1 4b2 0 - I 3b8 1 -1u 49 2 - 1 136 3 - 1 .29b 4 - 1 296 5 - I 3bb b - I 87 7 -lU b0 -1 12b -11 0 I44 -10 0 229 -9 0 2bb -8 0 215 -7 OU b0 -6 0 379 -5 0 2bO -4 0 312 -3 0 428 -2 0 234 - 1 0 342 0 0 451 I 0 5 6 2 0 288 3 0 243 4 0 255 5 0 385 6 0 182 7 0 160 8 ov 55 9 0 0b -11 I 6 2 -I0 I 140 -9 I 303 -8 I 303 -7 1 138 -b I 190 -5 1 117 -4 I 51b -3 1 219 -2 1 241 0 I 220 1 I 722 2 I 340 3 I 254 4 1 I91 5 IU b3 L I 356 7 I 24s 0 I 105 9 I 132 -10 2 173 -9 2U 65 -8 2 241 - 1 2 318 -b 2 153 -5 2 29b - 3 z 148 -2 2 bb2 - 1 2 b l 0 I 330 I 2 2 7 3 z z 490 -n - I 192 1-1 I -4 2 171) lOFc I1 7 52 I 297 39 I04 94 2 3 6 V4 150 70 192 435 178 132 I72 126 b2b 3 79 202 222 I'D9 392 171 5 6 175 18? I94 91 18b 134 377 258 308 424 333 45 3 380 28 129 28 I 278 385 9 5 14 132 141 214 254 218 7b 398 2 b 3 308 437 24b 308 44b LO 314 23b 2b4 413 184 1 6 3 30 102 b8 130 303 307 1 3 1 191 1 I b 590 220 252 244 824 375 253 205 5 360 25b 103 I37 152 I 243 318 13b 292 I b l 250 798 5 347 2?4 4 3 1 LIT n i i reflections (marked h k 3 2 4 2 5 2b b 21.7 2 8 2 '9 2 -9 3L -a 3 -7 3 -b 3 - 5 3 -4 3 - 3 3 -2 3 - 1 3 0 % I 3 2 3 3 3 4 3 5 3 b 3 7 3 8 3 9 3 -9 4 -8 4 -7 4 -b 4 -5 4 -4 4 - 3 4 -2 4 - 1 4 0 4 1 4 2 4 3 4 u 4 4 5 4 L 4 7 4 0 4u 9 4u -8 5 -1 5 -6 5 - 5 5 -4 5 -3 5 -2 5 -1 5 0 5 1 5 2 5 3 5 4 5 5 - J b 5 7 5 8 5 -b b -5 b -4 bV -3 b -a b - I b O b 1 b U 2 b 3 b 4 b 5 b b bU 7 b 8 b - 3 7 -4 7 -2 7 - 1 7 0 7 I 7u 2 7 3 7 4 ? 5 7 b 7 - I 8 0 8 1 e 2 8 3 8U 4 8 L-4 -4 -b -3 -b -2 -b -8 -5 -1 - 5 -b -5 lOFo 557 IbS b l bb 240 30 I 19tl 5b '123 107 371 30 5 319 177 22 1 44 I 195 1 3 9 242 90 $04 3 7 4 100 11H 156 1711 I 9 1 123 I b0 26 3 199 339 145 l b 3 387 227 33b -59 2b7 365 2U3 229 5 1 4 3 1 b4 149 IZb I04 308 174 22b 127 20b 4 1 3 292 2 3H 128 Vb 320 1 7 3 1 b2 137 111 b I 217 112 241 70 312 365 175 86 b l 132 2 I U I.? I 1 5 3 173 29u 20b 5 8 8 7 119 341 210 I 1 9 1b9 2 3 1 111 40 14b 340 3134 in1 47 153 I n 8 118 LO2 241 lOFc 582 148 > 3 24 I 114 194 72 123 94 377 2 79 32 3 179 2 34 473 408 124 223 71 406 372 103 I 1 8 144 193 189 117 152 26 I 111 332 132 I 5 3 3 1 8 352 220 33b -b 254 357 291 225 4 1 51 179 148 I22 107 30 4 I 4 8 218 I 1 8 289 383 273 224 127 103 318 157 I 1 0 I24 1 LO 5 3 291 378 101 21 3 25 290 361 155 U2 7 3 134 24 3 106 I35 I74 275 205 bb 7h I l l 332 20b l l b 101 164 2 2 7 l b 3 5.2 15'3 I 6 D ICO 214 I d 8 1114 245 TABLE 3 h k lOFo - 5 -I 132 -4 -5 111 - 3 - 5 156 -1 -5 183 -1 - 5 2b9 0 -5 1 4 1 1 -5u 34 1 - 5 b4 -9 - 4 l b 9 - a - 4 112 -1 -4 lbn -b -4 214 - 5 -4 204 -4 - b 191 - 3 -4 b 3 -2 -4 244 - I -4 I 9 3 0 -4 208 I -4 1 3 E 2 - 4 4 1 3 - 4 71 4 -4 I49 -10 - 3 1 0 4 -9 - 3 184 -6 - 3 311 -7 -3 173 -b - 3 U 48 - 5 - 3 294 -4 - 3 354 -3 -3 286 -2 -3 25b - 1 -3 -137 0 - 3 1 - 3 1 - 3 3 -3 4 -3 5 - 3 -10 -2 -9 - 2 -8 -2 -7 -2 -b -2 - 5 -2u -4 -2 -3 -2 -2 -2 -1 -2 0 - 2 I -2u 2 - 2 3 - 2 4 -2 5 -2u b -2 -11 -1 -10 - I -9 -1 -8 -1u -7 - I -b - 1 - 5 - I -4 - 1 - 3 -1 -2 - 1 - 1 - I 0 - I 1 - 1 2 - 1 3 -1u 4 - I 5 - 1 h - 1 7 - 1 -11 0 -10 0 -9 0 - 0 .0 -7 0 -b 0 -5 0 -4 0 - 3 0 -2 0 -1 0 0 0 1 0 2 0 3 0 4 0 5 0 b 0 I 0 8 0 -10 I -9 I -B 1 -7 1 -b I - 5 1 -4 1 -3 1 1 35 291 199 180 b2 8 9 1 I2 137 259 24s 244 4 3 228 3b9 415 2 5 7 71 4 b 40b 331 22 1 39 -52 1b9 182 1 b l 45 I74 380 229 354 188 214 52 1 418 92 203 5 7 333 255 I07 55 109 1 bO 222 88 239 343 344 434 59 330 149 476 437 115 l l b 95 1d5 38b 125 104 135 183 359 140 I50 417 Id1 3b9 lOFc 1 I 1 LOO 15b I 7 7 271 139 50 12 I71 I 1 9 141 229 212 194 73 229 1-38 I98 235 49 7 1 1>7 200 I89 313 175 38 2H4 3 1 1 250 2 32 219 271 297 183 58 87 127 138 254 2 3 3 2 3 9 1b 114 3 3b 393 2 30 b2 4* 415 337 22b 47 -19 197 I b0 5 3 155 371 204 324 1 TO 204 508 407 9 5 19b 2 5 349 255 103 59 12 7 163 211 8 3 224 322 342 437 44 29b I41 4b9 442 111 8 0 175 401 119 103 149 17b 350 131 I58 + 38 I l b 301 -132 I eq izn U in Table 3) are included in the structure factor calculation, R becaine 0.070.ing scheme chosen was : The weigh- ZU-' = (7 - 0.1 Fo - 0.0013 Eo2 - 0.00002 FO3) (5 - 10 sin3 0/h2)/[1.2 - exp(-10 sin2 0/h2)] in order to produce a fairly constant average value of wA2 in the ranges of sin0 and Fo. In order to verify the results of the least-squares refine- ment, a difference Fourier synthesis was computed with (Continued) h k -1 I 1-1 1 0 1 1 1 1 1 3 1 4 1 5 1 b 1 7 1 8 1 -10 2u -9 2 -8 2 - 7 2 -b 2 -5 2 -4 2 - 3 2 -1 1 - I 7 u 2 1 2 2 2 3 2 4 2 5 2u b 2 7 2 b 2 -9 3 -1 3 -b 3 -5 3 -4 3 - 3 3 - 2 3 - 1 3 0 3 1 3 2 3 3 3 4 3 5 3 b 3 7 3u 8 3 -9 4 -8 4 - I 4 -b 4 -5 4 -4 4 -3 4 -2 4 - 1 4 0 4 1 4 2 4 3 4 4 4 5 4 b k 7 4 8 4 -8 5 -7 5 -b 5 - 5 5 -4 5 - 3 5 -2 5u - 1 5 0 5 I 5 2 5 3 5 4 5 5 5 b 5 7 5 u 5 -b b - 5 bU -4 b -3 b -2 b - 1 b O b 1 b 1 b 3 b 4 b % bU b b 7 b -4 1 -3 7v - 2 7 - I 1 0 7 - a 3u lOFo 160 509 2 > 0 410 2 I D b 1 I54 2 35 140 LO1 3 1 I59 200 1 3 b - 8 1 17b 3 b l 53e 3 b4 5 1 I I U 39 1 356 40b 47 b l 162 19fl 40 234 235 2b7 2 1 1 75 40 3 562 3 1 7 124 5 3 5b 509 2b5 153 47 b7 154 74 157 137 30b 3 6 4 181 194 9 1 317 35b 214 I 54 b2 250 32 7 129 160 I b I 8 3 126 l U 3 3UO 4 b bb 2 30 I b4 466 150 92 l 1 d 121 215 205 144 37 I14 2 3 1 217 251 b4 151 2 2 8 29 3 240 45 97 I 1 1 b0 3b 108 307 Lb7 1un i nu 2 o r l0Fc I14 -1001 5 l a 255 45 I 231 12 151 7 3b 11 3 I 1 4 4 1 1b1 264 282 114 - 12 101 3bb 567 3u5 40 I 3 0 394 3 38 410 .48 61 1bO 18b 121 55 244 229 24 3 2 14 70 400 LO5 322 128 39 49 515 270 145 44 70 8 b 111 I 3 0 315 358 I 78 170 I U5 88 319 360 217 1 48 b8 249 334 125 I50 I95 111 1 3 0 215 I89 393 40 b5 2 3 0 I55 488 251 84 I11 128 213 215 14b 27 123 2 4 0 2 74 243 b9 1b9 233 286 2 3 9 IlJ2 117 b l 46 209 1v2 258 16 1 1 2 7 3 7 4 1 5 7 b 1 -1 8 o n I 8 2 8 3 0 L.5 -b - 5 - 5 - 5 -4 - 5 -3 -5u -2 - 5 - 1 -5 -8 -4 - 7 -4 -b - 4 - 5 - 4 -4 -4 - 3 - b -2 - 4 - 1 -4 0 -4 I -4 2 - 4 -9 - 3 -8 -3 -I - 3 -0 - 3 -5 - 3 -4 - 3 - 3 - 3 -1 - 3 - I - 3 0 - 3 1 - 3 2 - 3 3 - 3 4 - 3 -10 -2 -9 -2 -(I -2 -1 -2 -b -2 -5 -2 -4 - 2 - 3 -2 -2 -2 -1 -2 0 -2u 1 -1 2 - 2 3 -2 4 -2 5 - 2 -10 - 1 -9 - I -n - I -7 - I -b - 1 -5 - 1 -4 - I -3 - 1 -2 -1 -1 -1 0 - 1 I -1 2 - 1 3 - 1 4 -1 5 - I b - I -10 0 -9 0 -7 ou -b 0 - 5 0 -4 0 -3 0 - 2 0 - I 0 0 0 L O 2 0 3 0 4 0 5 0 b 0 1 0 -10 1 -9 1 -8 I -7 1 -b I -5 1 -4 1 -8 n lOF0 I bbl -Q2 I l b 25e 111s I44 11 1 b5 21% DO i i n 147 I 8 8 L I P 24 1 7 1 I 7 b 111 5 7 148 194 2 LO ) i n 0 9 6 5 1 5 1 214 I 7 3 2 I b 1 90 1b5 134 1 1 4 32 I 284 124 91 101 1 1 6 251 122 101 74 1 b l 227 I n 1 4? I I 4 219 398 351 30 IZb 210 LO2 259 54 20 I 1 3 R 42 284 229 312 b I 3 2 9 420 4bb 317 3n 140 -nz 1 72 100 z n r 14b IbL I? I I71 9h 227 34 I 271 54 I -71 200 34 I d 4 5 I1 202 199 14b V l 291 I 9 8 193 I l J 2 I* $11 350 b5 10Fc 110 -20 115 141 I 0 3 165 I 9 9 1 9 0 I26 b ) 71 I b9 188 110 3b 1 b 8 In.! 1 1 1 5 1 155 3 l b 191 I > b8 257 203 I 7 3 715 19b 158 I W 202 l o b 251 117 88 100 219 2Sb 111 100 03 152 223 39b I 8 5 I 8 100 200 353 344 15 I LO 189 201 264 b I zoo 138 48 28b 221 306 b l 19 301 399 455 135 -4b l b 3 19b 284 I 4 3 I50 1 0 7 1 b 9 I 1 314 350 256 519 -25 I 8 4 I d 7 J 2 k 335 68 53 2Ob 20 P 155 U8 30 3 I an I n8 i n 3 100 200 3 9 3 h k - 5 I -2 I 1-1 I u 1 1 1 1 1 3 1 4 1 5 IU b l I I -LO 2 -9 2 -8 1 -7 2 -6 2 - 5 2 -4 2 - 3 1 - 2 1 - 1 2 0 2 I 2 2 2 3 2 4 2 5 2 0 1 I .! -9 3 - 0 3 -1 3 -b 3 -5 3 -4 3 - 3 JU -2 3 - 1 3 0 3 I 3 2 9v 3 3 4 3 5 3 6 3 1 3 -8 4 - ? 4u -0 4 -5 4 -6 4 - 3 4 -2 4 - I 4 0 4 I 4 2 4 1 4 4 4 5 4 6 4 1 4 -? 5 -b 5 -5 5 -4 5 - 3 5 -2 5 - I 5 0 5u I 5 2 5 1 5 4 5 5 5 b 5 7 4 -b b -5 b -4 bU -3 b -1 b - I b O b 1 b 2 b 1 b 4 b 5 a 6 b -4 1 - 3 I -2 I -I 1 0 1 I 7 1 1 3 7 4 1 5 ? lOFo 412 J 4 R -b5 300 509 331 10') 37 I 3 9 V 3 I05 14h l b b I / * 11, I YO 1 7 1 410 2 74 37 284 I r R 371 *e 1 2 1 I I h 54 4 3 1 34 1 5 3 5I *? 241 992 44 7 148 34 LU1 157 1 9 0 I 1 7 88 101 3 1 195 1uu 34 7 34? - 1 b l T7u 2 34 3 ? 3 3 38 -bD b 0 215 248 2Ob uo Pb 2 b l 217 250 159 1b 2 1 8 218 305 I 3 2 114 15 I 163 I28 96 33 197 1 5 1 214 117 120 95 $14 194 l b b 103 41 71 1 5 1 2b5 130 31 152 I55 116 ieq 291 410 2 5m 2b4 10Fc 4JV 2 $b l o l l -1v 291 I $Q 19 b $ 5 I ( h 1 r b ' I h I 1 1 19 3 Bhl I 10 I42 14 t Ih 419 2 b 3 29 2 1 5 1 1 % 15 I 'ab I, I 1 1 I 1 8 5 1 bII 2 34 141 399 3 I 21 2I* 4 1 I 6 1 1 1 4 5 60 11.9 l b ) 100 I 8 106 29 I V J ?O 3 3 4 I 34U - 1 LO 215 220 $511 l2b - I4 b4 1 35 ? I 3 1 3 1 I vv Ul 00 25 1 24 1 I54 I 1 215 210 I15 I I 3 I05 IS 7 I l l I so Vb I 1 21IV 2 I2 220 150 1 l b Vb 8 l i I O U 140 I01 4 1 I 1 141 111 140 5b t 4 3 ism 1un m v 2bn all the observed reflections and the structure factors calcu- lated in the last cycle of the refinement.The resulting map showed a peak of 1.5 eA-3 at the origin, and peaks of up to f 0.4 eA-3 distributed without a recognizable pattern through the cell. RESULTS The final atomic co-ordinates and anisotropic temperature factors with their standard deviations axe listed in Tables 1 and 2. The observed and calculated structure factors are shown in Table 3, and R as a function of the level on which264 J.Chem. SOC. (A), 1969 TABLE 4 Level R R hkO 0.106 0.111 h k l 0-072 0-082 hk2 0.067 0.078 hk3 0.053 0.068 hk4 0.050 0.070 hk5 0.051 0.064 TABLE 5 Interatomic distances (A) and angles (") with their standard deviations in parentheses (a) [Pd(SO,) 2(NH3) 212- Pd-S 2*294(6) S-Pd-N 90.9 (3) Pd-N 2*060(9) s-0 ( 1) 1 0 9.4 (5) s-0 (2) 1 -470 (8) 0 (2)-S-O (3) 109*2( 5) S-0 (3) 1.492 (7) 0 (3)-S-0 (1) 107.6(5) S-0 (av.) 1.483(5) 0-S-O(av.) 1 0 8.7 (2) Pd. - *0(1) 3-12 1 (1 1) Pd-S-0 (1) 109*5(4) Pd. - *0(2) 3-1 31 (1 1) Pd-S-0 (2) 110*7(4) Pd. - *0(3) 3*143(9) Pd-S-O(3) 110.4(4) S* * .N 3*108( 13) S.. .NII 3*058(13) N. * sO(1) 3.6 1 3 ( 1 6) N. * .0(213 2.9 1 8 ( 14) N. *0(3) 3.141(13) O(1). * .0(2) 2*412(14) O(1). * *0(2)* .0(3) 59.7(5) O(2). *0(3) 2.415(11) O(2)- - .0(3)* - -0(1) 60*1(5) O(3).- .0(1) 2*402(12) O(3). - -0(1)* * *0(2) 60*2(6) 1 -485 ( 1 1) 0 ( 1)-S-0 (2) (b) [NaO,]+ chains 3.702(12) Na. * mW(3). - *NaI 98.9(4) 3-956(11) Nam. . sW(2). - NaI 104-4(4) 2.368(10) O(2JII). .Na- - sW(3) 165.4(1.3) 2*470( 11) 2.342jiij 2-543( 11) 2.462( 13) 2-401 (13) 3*155(15) 3.7 83 ( 1 7) 3*397( 14) 3*455( 13) 3*207( 13) 3.392( 16) 3.991 (17) 3.166( 17) 3.703 (1 6) 3*574( 16) 3.068( 16) 3.444( 16) (G) Atoms possibly connected by hydrogen bonds W(1). * *O(lV) 2.882(14) O(lV)* - *W(l)* * -O(lII) 98.5(4) W(1). * .0(l1I) 2*838(12) W(2). * -0(lv) 2.846(14) O(lV)- .W(2)* * *0(3mI) 1174(4) W(2). - *0(3v11) 2.880(12) W(3). - .0(3V) 2.808(14) O(3V). aW(3). * -0(3I) 88*7(4) W(3). * *01,3I) 2.771 (15) N* - 'O(2II) 2-918(14) O(211)- .N* * sO(2III) S0*4(6) N.* -0(2II[) 3-063(16) O(2111). * -N* * *W(lVI) 136*4(7) N. * *W(lVr) 3*076(19) W(1n)- * -N. - *0(2II) 126-3(5) Atoms without superscripts have the co-ordinates of Table 1. Roman numerals as superscripts refer to the positions : I 1 - z , ---y,l--Z V x, y > z + 1 I1 - x , -y, -2 VI x, y j z - 1 I11 x, Y + 1, z VII 1 - x , - - l - y , l - - z IV x, y - 1, z the reflection was recorded is given in Table 4. Table 5 shows bond lengths and angles, together with their standard deviations. Figure 1 shows a view of the [Pd(S0,),(NH,),]2- ion. Figure 2 shows the structure projected down b and Figure 3 depicts an idealized view of the co-ordination around the Na+ ions, viewed along b. 1.4 1.485 FIGURE 1 A view of the [Pd(S0,),(NH3),]2- ion u FIGURE 2 Projection down the b axis of the unit cell of G' = c .sin CL. Some of the possible Na,[Pd(S03),(NH,),],6H20; Numbering of atoms given in Table 5. hydrogen bonds are indicated with broken lines a' = a . sin y, DISCUSSION The crystal structure can be considered as composed of two types of units, the square planar trans- [Pd(S03),(NH3),]2- ion located at the corners of the unit cell, and chains of [NaO,]+ distorted octahedra running parallel to the b axis in the middle of the cell. The co-ordination around each sodium atom consists of (i) the oxygen atom 0(1) from one of the sulphite groups; (ii) the water molecule W(1); (iii) two water molecules, W(2I) and W ( 2 9 , related by inversion plus translation along b ; and (iv) two centrosym- metrically related water molecules, W (3) and W (39.Each of these octahedra shares two edges with neigh- bouring octahedra, one edge being common to two centrosymmetrically related octahedra [edge W(3)-Inorg. Phys. Theor. W(3I)], the other being comiiion to two octahedra related by inversion plus translation [edge W(2I)-W(2III)]. Each of the [Pd(S0,),(NH,),]2- units contributes its two O(2)-type oxygen atoms to two different chains, the chains being thus connected along the (101) direction by these ions and the combination of chains and [Pd (SO,) , (NH,) ,] 2- ions forming two-dimensional sheets FIGURE 3 An idealized view of a chain of [NaO,]+ polyhedra as viewed along b which are parallel to the (101) plane. Hydrogen bonds are possible between neighbouring sheets.These bonds are between the following pairs of atoms: W(1). .O(lV), \V(2). .0(lv) and W(3). - aO(3v). The crystal struc- ture can therefore be envisaged as being formed of parallel sheets which are hydrogen bonded to each other. lo H. C. Freeman and M. R. Snow, A d a Cryst., 1965, 18, 843. l1 M. J. Bennett, F. A. Cotton, D. L. Weaver, R. J. Williams, l2 S. Oi, T. Kawase, K. Nakatso, and H. Kuroya, Bull. Claem. and W. H. Watson, Acta Cryst., 1967, 23, 788. SOC. Japan, 1960, 33, 861. 265 The tram-[Pd(S0,),(NH,),]2- has the expected square planar geometry, the S-Pd-N angle being of 90.9 3 0.3". The Pd-N bond distance is 2-060 & 0.009 A, similar to that found in other palladium@) complexes having trans-metal-nitrogen bonds, i.e. 2.02 A in l o [Pd(C,,H,N,),]. As in [PdSO,(NH,),], the sulphite group is bonded through sulphur and keeps a pyramidal shape.The Pd-S bond length is 2.294 & 0.006 A in [Pd(SO,),(NH,),I2-, significantly longer than that of 2.245 & 0.006 A determined for this bond in [PdSO,(NH,),] and within one estimated standard deviation of the Pd-S bond lengths determined in l1 [Pd(DMSO),Cl,] (DMSO = dimethyl sulphoxide) and in l2 [Pd(SCN,H,),Cl,], 2.299 j= 0.002 and 2.30 A respectively. This comparison indicates that the sulphite group has a structural trans-effect which could be due to x bonding or to a ts effect as postulated13 for platinum(I1)-phos- phorus bonds. The weakening of the Pd-S bond in the di- as compared with the mono-sulphitopalladate, does not have a significant effect on the dimensions of the complexed sulphite groups.The average S-0 distance and the average 0-S-0 angle are 1.49A and 108.6" in the monosulphite-compound,l 1.485 A and 110.3" in [Co(en),S0,NCS],14 and 1.483 & 0.005 A and 108.7 & 0.2" in [Pd(S0,),(NH,)2]2-. The stretching frequencies are also nearly the same in these compound~.~*~~ Thus, we conclude that the geometry of the sulphite group, when bonded through sulphur to the metal, is deter- mined by the cr bond to the metal, as discussed in the structure determination of [PdS0,(NH3),].1 \Ye thank the Director and Staff of the Departmento de CAlculo of the Universidad Central de Venezuela, for assis- tance and allocation of computer time, and Dr. R. Levitus for supplying crystals of the complex. Part of the X-ray equipment used in this work, was purchased with funds from a Ford Foundation Grant.The following programs written for the IBM System 360 were used and are gratefully acknowledged : C. T. Prewitt, B. Foxman and L. N. Becka, 1967, SFLSS, a full matrix crystallographic least squares pro- gram; A. Zalkin and B. Foxman 1967, FORDAP, general Fourier Synthesis; M. E. Pippy and F. R. Ahmed, 1968, SCAN, scan of bond distance and angles; M. V. Capparelli, 1968, CELL 02, cell constants from high level Weissenberg photographs; D. P. Schoemaker and S. R. Srivastava, 1963, VIBELL, anisotropic temperature factor interpreting program. [S/1187 Received, August 14th 19681 l3 A. Pidcock, R. E. Richards, and L. M. Venanzi, J . Chenz. SOC. 14 S . Baggio and L. N. Becka, to be published. l5 If.E. Baldwin, J . CJzem. SOC., 1961, 3123. ( A ) , 1966, 1707. 260 J. Chem. SOC. (A), 1969 Crystal Structure of Disodium trans-Disulphitodiamminepalladate(ll) Hexahydrate By M. V. Capparelli and L. N. Becka,*t Facultad de Ciencias Exactas y Naturales, Universidad de Buenos The structure of Na,[Pd(S03)2(NH,)8],6H,0 has been determined. It forms crystals of space group P 1, with and one formula weight in the unit cell. The structure was solved by Patterson methods and refined by full-matrix least-squares. There is the expected square planar co-ordination around the palladium atom, the sulphite groups being bonded through sulphur, in the trans-configuration and keeping the shape of a trigonal pyramid. Each of the sodium ions is surrounded by six atoms in a distorted octahedral co-ordination.Chains of these octahedra, sharing two edges with two neighbouring octahedra, run parallel to the b axis, the chains being connected in the other two dimensions through the oxygen atoms of the sulphite groups of the [Pd(S0,),(NH,),]2- ion. Some important distances and angles are : Pd-S, 2.294 f 0.006 ; Pd-N, 2.060 f 0.009 ; S-0, 1.483 f 0.005 A : 0-S-0.108.7 f 0.2". S-Pd-N, 90.9 f 0.3". These results are compared with the dimensions of [PdS0,(NH3),] there being a significant lengthening of the Pd-S bond, and no appreciable difference in the dimensions of the sulphite group in the [Pd(S03),(NH,),]2- ion. Aires, Argentina, and Escuela de Quimica, Universidad Central de Venezuela, Caracas, Venezuela a = 8.92 f 0.02, b = 6.52 f 0.02, c = 7.07 f 0.02 A, u = 73.5 f 0.2".p = 102.5 f 0*2", y = 81.6 f 0.2"; As part of a programme of studies on the structure of the sulphite ion and on co-ordination compounds of this group,1*2 we undertook the structure determination of trms-N%[Pd (SO,) ,(NH3) 2] ,6H20. We chose to study this compound in order to compare the bond length and angles within the tram-[Pd(SO3),(NH,),]2- ion with the corresponding magnitudes observed in [PdSO,(NH,)J . The latter compound has a Pd-S bond of 2.245 A, and the S-0 bonds are shorter than in the sulphite ion. We wanted to establish whether replacing one ammine group by a second sulphite group, trans to the first, would weaken the Pd-S bond and how this change would affect the dimensions of the complexed sulphite group. EXPERIMENTAL Crystals prepared by Earwicker's method were identified The t Present address : Facultad de Ciencias, Escuela de Quimica, M.A. Spinnler and L. N. Becka, J . Chem. SOC. ( A ) , 1967, by their infrared spectra4 and chemical analysis. Universidad Central de Venezuela, Caracas, Venezuela. 194. crystals were stable in air when exposed to X-rays. They are colourless needles, the needle direction coinciding with the G axis of the unit cell. Crystal Data.-H,,N,Na,O,,Pd, M = 454.66. triclinic, a = 8-92 f 0.02, b = 6.52 f 0.02, c = 7.07 &- 0.02 A, a = 375.6 f O-8%13; D, (by flotation) = 2.01 f 0.04; 2 = 1, D, = 2.010, F(000) = 228. Space group P 1 or P 1, struc- ture analysis proceeds satisfactorily in P 1. Cell constants were determined from - K,, splitting of high-angle reflections obtained for the hk0-4 and h0Z levels by the equi-inclination Weissenberg method using Cu-K, radiation.The cell constants were adjusted by the least-squares method of Alcock and Sheldri~k.~ In order t o have a unit cell oriented in accordance with the recommendations of the Commission on Crystallographic data,6 it is sufficient to transform the axis by the matrix OOiliOOlOlO so that S. Baggio and L. N. Becka, Chem. Comm., 1967, 506. G. Newman and D. B. Powell, Spectmchim. Acta, 1963, N. W. Alcock and G. M. Sheldrick, Acta Cryst., 1967, 25, 35. 6 0. Kennard, J. C. Speakman, and J. D. H. Donnay, Acta 73.5 & 0*2O, p = 102.5 f 0-2", y = 81.6 f 0.2", u = 3 G. A. Earwicker, J . Chem. Soc., 1960, 2620. 19, 213. Cryst., 1967, 22, 445.Inorg.Phys. Theor. 261 u2 = -c, b, = --a, c2 = b, a2 = 180 - y, p2 = 180 - a, and The data used to solve and refine the structure were collected with Cu-K, radiation using crystals with maximum cross-section 0.07 x 0.07 mm., and length 0.44 mm., mounted along the c axis. We obtained 1213 independent reflections of measurable intensity from mechanically integrated equi-inclination Weissenberg photographs of layers hk0-5. The region covered represented 61% of the limiting reflection hemisphere of sin O/A = 0.65,93% of these reflections were of measurable intensity. Y2 = P. atoms in the unit cell. Although oxygen atoms could not be distinguished from nitrogen atoms on the basis of peak heights, the nitrogen atom could be located unambiguously from chemical requirements.Structure factors were calculated including all but the hydrogen atoms, using form factors listed in ref. 8 for palladium, sulphur, and sodium, and those from ref. 9 for nitrogen and oxygen. For this calculation we assumed values for the atomic isotropic temperature factors: Pd, 0.4; S, 1-2; Naf, 1.8; 0, 2.1; and N, 2.1 A2. Practically all the signs At this stage R was 154%. TABLE 1 Fractional co-ordinates, with their standard deviations in parentheses, and orthogonal co-ordinates (A) 104, X/n l o 4 . Y / b 104. z / c X‘ Y‘ 2’ Pd 0 0 0 0.0 0.0 0.0 S 1942 (2) -2535(3) - 2 7 1 (4) 1.7634 - 1.4560 -0.1769 Na 3844(4) 2834 (6) 4293(7) 2.6015 3.2105 2.8018 1564(7) - 2645(10) - 2385( 13) 1.8189 - 2.0020 - 1.5566 2087(8) - 47 13 (9) 1 197 ( 12) 1.621 1 - 2.5625 0.7812 O(1) 3484(7) - 1877(12) 122(13) 3.0516 - 0.7480 0.0796 O(2) 1607 (9) 1514( 13) 4804( 15) 0-5337 2,1620 3.1353 O(3) 4064(9) - 4923( 13) 6570( 14) 2-3766 - 1.3625 4-2879 W(1) 4.8055 5232(9) - 358( 12) 7363( 14) 3.2612 W(2) 1.9258 930( 11) %28( 13) - 1434( 17) 1.0845 1.4809 - 0.9360 Y(3) The orthogonal co-ordinates X’, Y’, and 2’ are derived from the fractional co-ordinates by the relations: X’ = a sin yx - (cos /3*/c* sin @)z Y‘ = a cos yx + by +- G cos uz Z’ = (l/C*)Z W represents a water molecuIe.TABLE 2 Thermal parameters with their standard deviations (Az) lo5 - P11 lo5 Pz2 lo5 * P33 lo5 * P l 2 lo6 * PI3 Pd 366 ( 10) 581(19) 719(32) -156(8) 213(10) S 427(22) 792(42) 872( 78) - 79(22) 98(26) Na 762(44) 1351(84) 1092(130) - 85(48) 226(62) 858 ( 83) 8 1 1 ( 1 3 1) 1 3 1 6 (236) -7(81) 145(97) 520(73) 1970(175) 1682(254) -455(92) 206(94) 726(79) 1330(143) 813(236) 164(82) 242(91) O(1) 0 (2) O(3) W(1) 969(96) 1975(192) 1569(268) -462(108) 20(111) W(2) 857(88) 2244(198) 1308(263) -61(104) 375(107) W(3) 925(89) 1749(174) 1444(269) -275(99) 368(108) N 1284(122) 1175(168) 2066(329) -913(119) 1167(162) The anisotropic temperature factors are in the form ~ X P - (h2Pii + k2pzz + z2P33 + 2hkP12 + 2klPaa + 2W313) and isotropic temperature factors B, are calculated from (4/3)XCCBij(Zj. isj) where i , j = 1,3.10‘ Pa3 -214(13) - 266(36) - 367( 71) - 336( 122) -3(119) - 807( 160) - 745( 162) - 655( 153) - 626(167) 186( 167) I3 1.00 1.33 2-06 1-89 2-18 2.32 3.13 2.63 2-50 2.55 Lorentz and polarization corrections were applied and the individual layers were correlated 7 with the set of structure factors of the O M , hOZ, hhl, and I& levels which were re- corded on a precession camera, using Mo-K, radiation.The intensities were measured with a microdensitometer. Since the linear absorption coefficient is rather large for C!L-K, radiation, p = 116 cm.-l, we applied an absorption correction to the data, assuming that the crystal is of rectangular shape and bound by (100) and (010) type faces. The discrepancy index between equivalent reflections is 50;,, giving an indication of the experimental error of the data. Structure Determinutiow-A three-dimensional Patterson synthesis was computed using all the independent reflections of observable intensity. The resulting map was readily interpreted, providing a set of approximate co-ordinates for all the non-hydrogen atoms.Furthermore, this map corresponded well to a centrosymmetrical arrangement of ’ W. C. Hamilton, J. S. Rollet, and R. A. Sparks, Acta Cryst., 1965, 18, 129. calculated for the structure factors were positive. The trial structure was checked computing a three-dimensional Fourier synthesis with the calculated signs and the observed structure factors. With the trial structure we started a sequence of full- matrix least-squares refinements allowing for the simul- taneous variation of all the co-ordinates, individual isotropic temperature factors and a different scale factor for data from each of the hk0--5 levels. After three cycles, the shifts were less than a fifth of the estimated standard deviations of the parameters and R dropped to 0.081 and IZ’ (= XwA2/CwFo2) to 0.096.We then started a sequence of full-matrix refinements with anisotropic temperature factors and with just one overall scale factor as parameters of the refinement. Convergence was reached after two cycles, R and R’ being 0.065 and 0.078 for all the independent reflections of measurable intensity. When unobserved 8 D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 17. ‘ International Tables of X-Ray Crystallography,’ voi. 111, Kynoch Press, Birmingham, 1962.262 J. Chem. SOC. (A), 1969 TABLE 3 Observed and calculated structure factors The letter U following the k value indicates an unobserved reflection for which F,, is estimated assuming an intensity equal to Values bounded by parentheses correspond to reflections covered half the lowest measurable intensitv in that region of the film.by the beam stop; 75 k L -0 L O 2 0 3 0 4 0 9 0 b 0 7 0 9 0 10 0 -10 I -9 1 -8 I -7 I U -6 I -5 I - 4 1 -3 I -2 I -I I 0 1 1 1 2 1 1 1 4 1 5 1 b 1 7 1 8 1 9 1 10 I II I -9 2 -8 2 -7 2 -6 2 -5 2 -4 2 - 3 2 -2 2 -1 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 LO 2 I 1 2 -9 3 -8 3 -I 3 -6 3 -5 3 -4 3 - 3 3 -2 3 -I 3 0 3 I 3 2 3 3 3 4 3 5 3 b 3 7 3 8 3 9 3 10 3 I 1 3 -8 4 -7 4 -. 4 -5 4 4 4 -3 6 -1 4 0 4 I 4 2 4 3 4 * 4 s 4 0 4 7 4 8 4 9 4 LO 4 -b 5 -5 5 - 4 s -3 5 -2 5 -1 5 0 5 1 5 2 5 3 5 4 5 s 5 b 5 1 5 8 5 9 5 10 s -8 b -4 b -3 b -a b -1 b O b i b m o -a 4u lOFo 275 22b -80 5 ) 556 4 0 2 104 153 123 260 8tl 275 276 34 296 193 410 453 360 245 345 50 I 562 84 238 48 472 438 I60 I04 137 lb2 198 248 324 82 154 3 8 V 30b b24 185 -b5 bb 361 4 5 1 673 I 4 9 213 277 234 25u 140 LO 55 340 2 3 1 137 12 I 140 53b 391 23b 167 301 461 546 297 222 43 2bO 199 2 3 1 125 32 54 253 358 193 176 32 359 b30 I 9 3 403 4 8 206 446 174 I 3 9 189 143 299 I 1 5 60 39 1 365 89 I08 IS7 434 457 129 I01 52 359 31 1 233 I29 78 12b 139 234 331 I 3 0 I 1 5 I 3 9 iac 1; represents 1.lOFc 357 I 78 - 1 3 50 b25 394 87 141 112 234 91 235 257 31 2 74 171 525 s 7 3 352 1 b5 3bb *I8 715 2 235 28 *a5 430 152 99 117 105 178 2 35 302 66 138 392 308 777 197 -7 72 371 461 773 131 208 248 225 2 32 125 57 b3 1b3 330 205 112 116 13b bob 39 3 20b 146 287 485 570 205 6 254 I86 206 I 3 5 44 5s 248 356 I 69 I48 12 338 b9b 173 398 4 1 I 9 3 422 I52 125 184 127 277 100 124 309 331 *I 85 120 41s 451 I 0 4 77 3 I 360 305 20 7 I14 91 113 111 203 310 121 101 !21 261 h k lOFo 2 b 3 b 4 b 5 b b b l b I b 9 6 - 3 7 -2 7 - 1 7 C l 1 1 2 7 3 1 4'- 1 5 7 b 7 7 7 1.1 -* -7u - 5 -7 - 4 -7 - 3 - 7 -2 - 7 - 1 - 7 c -1 1 - 7 -8 - b -7 -* -h -b - 5 -0 - 4 - b - 3 -b - 2 -b - 1 -b C - b I -6 2 -6 3 -b 4 -b -9 -5u - 8 - 5 -7 - 5 -6 -5 -4 -5u -3 -5 -2 - 5 - 1 -5 c -5 I -5u 2 -5 3 -5 4 -5 5 - 5 b -5 -1c -4 - 9 - 4 -8 -4u -7 -4u -6 -4 - 5 -4 - 4 -4 - 3 -4U - 2 -4u - 1 - 4 c - 4 1 - 4 2 -4 3 -4u 4 -4 5 - 4 b - 4 7 -4 -11 -9u -1c -3 -9 -3 -8 -3 -7 -3 -b -3u -5 - 3 -4 - 3 - 3 - 3 -1 - 3 - 1 - 3 c - 3 1 - 3 2 - 3 3 - 3 4 - 3 5 -3u 6 - 3 7 - 3 8 - 3 - I 1 -2u -1c -2 -9 - 2 -I -2 -b - 2 -s -1 -4 - 2 - 3 -2 - 2 -2 -1 -2 c - 2 1 - l u 2 -2 3 -2 4 - 2 5 -2 b - 2 7 - 2 9 - 2 -11 - 1 -10 -1 -5 - 1 -5 L5 -1 -2, a - 2 203 375 1 7 2 b 2 20 I 189 2 75 I54 84 zco 242 L 33 14c 113 22c 267 239 1 b t 63 45 9c 2c9 25c 149 119 ice I 9 8 I0C 218 96 YC 279 211 34 7 IZC 8 3 132 19 I 255 158 56 219 d5C 346 1 9 4 -77 L5C 335 z c 7 35) -71 223 279 215 197 67 262 2 0 5 b9 73 390 419 312 - b S -08 311 512 446 212 - 78 2 70 229 234 99 38 1 8b 245 2C7 236 0 3 24 I 463 36C 402 192 192 508 4bC 97 192 79 3cc 3c3 103 4 5 189 255 381 V l 168 360 3ss TIC 45 7 2 > u 52 125 4c7 345 225 2 39 I 1 2 31C 1C3 8 1 9 5 oa i e s 1OFc I 8 4 356 259 8 1 199 17b L4b 111 91 2CO 214 21 b 126 99 204 244 210 149 bb 76 9 1 I t 0 231 147 I 1 4 I c4 165 179 1 96 105 93 286 276 332 lC7 60 124 I b9 244 155 36 205 262 34b 278 -14 220 3CO 193 328 -12 193 255 207 87 2C5 2c5 a9 b5 314 4c7 3c5 -10 -32 3C I 517 438 204 -10 2 36 218 222 107 94 196 251 1% 220 b 231 490 349 408 175 115 525 467 96 173 2 3 281 273 104 5b 91 I80 2 5 5 44b 109 I 7 1 316 34 1 825 491 218 b8 101 402 328 2 2 i 208 102 288 LO1 19) 79 89 I i n h k lOFo 1OFc - C - 1 ZbP 154 - 1 - 1 40C 380 -b - 1 453 4hZ - 5 -I 25b d42 -4 - 1 -17s -136 - 3 - 1 51C bI1 -1 -1 51C 101 C - 1 451 5b5 2 - 1 514 5 f b -2 - 1 241 260 1 - 1 - 3 5 3 - 3 1 5 3 - 1 1 5 3 256 4 - 1 399 4C2 5 - 1 4 2 5 6b5 b - 1 1CC LC3 7 - 1 148 13n 8 - 1 2 0 ) 191 9 - 1 157 142 -11 C 214 235 -1c c 188 2c1 -9 C 339 3 3 1 - 8 CU -72 -1b - 7 CU b9 03 -b c 409 4 L 8 -5 0 4 0 3 4U4 - 4 C 471 498 - 3 C 125 126 - 2 c - 1 1 2 -96 I C c 6731 I C 5 5 1 739 2 c 286 d 8 4 3 C 319 311 4 C 451 4bb 5 0 239 242 b C 3Cl 313 7 C U 16 47 9 C 227 208 IC c 2 1 s 2c2 -1c 1 201 194 - 5 I 212 281 -? 1 13% 121 -b 1 -204 -154 -5 I 38C 405 -4 1 457 5CO -3 1 655 858 -2 1 4 3 3 499 - 1 1 -2bl -23b c I 202 I92 1 1 654 853 2 1 569 b56 3 1 438 479 4 1 l l h 1C5 s 1 -85 -44 b 1 395 412 7 1 2SC 276 I ) 1 189 178 9 1 159 I40 IC 1 LIE 105 - l C 2U 4 3 h l - 9 1 I 0 1 1 c 5 -t 2 264 255 - 7 2 328 328 -b 2 13e 134 -5 2 3r9 318 -4 2 126 119 -3 2 423 416 -2 2 561 b9b - 1 2 359 390 C 2 134 l5U 1 2 2 5 1 235 2 2 131 140 3 2 532 bC2 4 2 325 309 C 2 116 I 7 8 7 2 262 255 8 2 318 38C 5 2 147 145 LC 2 111 I 1 3 - 8 3 14h 130 -7 3 271 283 -6 3 389 380 -5 3 301 276 -4 3U 6 6 69 - 3 3 2h3 239 - 2 3 -84 -1b - 1 3 591 b55 c 3 3 4 1 334 1 3 305 3C8 2 3 4bb 471 3 3u s5 22 4 3 429 426 5 3 4 C 3 417 b 3 125 129 1 3 309 2 9 3 8 3 14M 141 5 3 17C 16& 1 C 3 234 2C9 -1 4 l b l 142 -b 4 25C 237 -4 4 331 313 - 2 4U b s b l c 4 343 332 I 4 556 5hb 2 4 139 I 4 0 3 4 I99 2cu 4 4 2b7 215 5 4 301 3Cl 7 4U 1 7 99 9 4 148 I40 10 4 187 182 - 7 5u 45 81 ( - 1 c 5eb I 8 c i i e l C 5 - a I 253 247 5 J 198 191 -5 4 3c3 zes - 3 4u -a9 -9 - I 4 4 8 1 4 e 3 6 4 29e 491 a 4 12c i i \ ?$ k lOFo lOFc -6 'IU -bC - 2 8 - 5 5 I74 I t 1 -4 5 4 d l d 3 b - 3 5 e19 430 - 2 5 222 2CO -1 5 c 7c 80 C 5 2 b S 155 I 5 3 z n 3 d s 3 5 195 21s 4 5u - 7 1 - 4 5 5 233 223 h 5 310 3 C 5 7 5 2C1 L P B h 5 188 110 5 5u 5e 89 -b b l c l 142 - 5 hU 52 71 -4 bU b l 33 -3 b 305 304 - 2 b 316 318 -1 h 241 ?4b C 6 IC7 $ 2 1 bU T I ) 24 2 6 177 Ib6 3 b 3 8 t 382 4 b 2C9 2C5 5 b 192 112 h t 1CC l C 3 1 t 219 1 c 4 - 3 1 92 L13 -2 7 IC4 I05 -I 1 470 259 C 7 I t 3 147 1 7 I79 l a 0 2 7 I 2 4 121 3 7 151 I64 4 7 316 3C7 5 7 24c L C Y 6 1 124 110 v 1 1 3 4 I29 C 8 149 1b7 1 8 243 262 2 8 1C7 113 3 8 145 I50 4 8 119 134 L.2 2 5 3CC 213 e 6 ~ 3 r 251 - 5 -1 119 1 J l -4 -1 183 19C - 2 -1 15C I52 rl -7 4 1 54 c - 7 LC2 130 -8 -6 11H I91 -7 - h 184 182 -b - b 187 lM3 - 5 -0 106 ICS -4 - b 5 3 10 -3 -t 219 2Yb -2 -6 192 193 -1 -b 2 4 7 265 C -b I 6 4 111 I -6U 42 5L 2 -6 l l b Ib2 3 -b 119 143 -9 - 5 120 109 - 8 - 5 89 ' r l -0 -5 355 330 -4 -5 IdC I27 -3 -5 176 172 -2 -5 24C 235 -I -5 331 324 I - 5 146 141 2 - 5 9C bV 3 -5 187 175 4 - 5 2C8 21b 5 - 5 124 1 J b - 1 C - 4 2bC 263 -9 -4 219 215 -8 - 4 I I b 121 -7 - 4 144 I54 -6 - 4 166 Lb8 -5 -4 4 b l 448 - 4 -4 266 228 -3 -4 134 123 -2 - 4 165 154 -I - 4 251 215 C -4 La8 215 1 - 4 334 ?23 2 - 4 54 43 3 -4 193 185 4 -4 2S8 257 5 - 4 2C8 2C3 6 - 4 I 7 8 193 - 1 1 - 3 b9 b4 -1c -3 222 211 - 9 -3 271 2e7 -8 -3 306 3%0 -7 - 3 186 18s -b - 3 - l I C -132 - 5 -3 i d 3 247 - 4 -3 $14 291 -3 - 3 517 535 -2 -3 372 170 - 1 -3u 4 3 39 c -3 2c2 180 I - 3 4CC 390 2 - 3 348 348 3 -3 3 C l 3C5 5 - 3 I85 1113 b -3 17b 190 7 - 3 183 195 -11 -2 148 I 5 1 -1c - 2 1s 15 -3 - I i n 7 159 -7 - 5 251 289 -5 -5 188 r e 8 c -5 15e 151 4 -3u 53 i n h k -6 -2 -1 -2 -1 -2 - b -2 -s - 2 - 4 - 2 - 1 - 2 - 2 - 2 -1 - 2 c - 2 1 - 2 2 -2 3 - 2 4 -2 * -2 b -2u 1 -2 8 - 2 -11 -I -1c - 1 -5 - 1 - c -1 - r - 1 -* -I -s -I - 4 -I - 3 -I - 2 -I -1 -1 c -1 I - I 2 - I 3 - 1 4 .- 1 9 - 1 b - 1 7 -1 I -1 0 - 1 -11 c -1c c -9 c -1 c -6 C -I c -4 c - 3 c - 2 c 1-1 c c c 1 c 2 c 3 c 4 c s c h C 7 c B C o c -1c 1 -5 1 - 7 1 -1 I U -I 1 - 4 1 - 3 1 - 2 1 - 1 1 I 1 2 1 3 1 4 1 5 1 4 1 1 1 8 1 9 I U 10 1 - L O 2u -5 2 -t 2 -7 2 -6 2 -5 2 -4 2 - 3 2 - c 2 -I 2 c z 1 2 2 2 3 2 4 2 5 2 b 2 7 2 c 2 5 2 I C 2 -5 3 - 1 3 -6 3 -I Y - 4 3 - 3 3 - 2 3 -1 3 c 3 I 1 2 3 3 3 4 3 5 3 4 3 7 .3 8 1 5 3 - e c - 8 I -e 3u lOFo 141 215 2b5 1 3 3 22s 531 b12 55 174 4 3 * 216 29c I2b 5 1 204 I 8 t 14C 144 - b4 38C 4 0 3 4 b l 177 155 4 Z C L l I 473 1 7S 225 234 I 94 211 197 182 3Cl 19c 143 12c 13c 543 137 219 -1b3 525 4b5 12 I 412 I 9 3 39 3 3c5 PI 90 I4C 133 279 365 135 4 t 224 1b9 54c 35 7 254 555 293 31t -103 38C 3C8 3 0 t 46 116 Y5 92 2b5 325 33 1 t b I I P 4 c c 5c3 74c -159 34 3 2ce 211 4b4 6 b 91 3 5 t 11b 24 7 51 11 .+ 5 2 8 1 218 357 372 bC 412 3c 3 175 ,4c 3 5 c 42L 372 3 1 1 33e z3e z5e i b e 37c IZF ee 151, e 3 l b 5 259 10Fc I44 1 d O a10 314 I 4 0 2c9 5bq 210 7 7b 42 1 b l 44 I 2C8 297 I I* P 278 21b Leo 130 141 -31 414 412 4CI 4 9 1 163 148 428 20s 5b5 17) 3bO 204 244 I 9 0 I19 152 204 I 8 3 2M6 141 11b 342 1 3 3 140 3c4 - 5 b 394 1 bb4 490 128 449 3ee 3c5 79 1 C l 146 I21 2114 398 135 3b 232 I70 3 19 2c3 b 5 2 3C I 138 -60 383 304 312 99 2 3 122 32 8s 261 321 33c 3b I 2 7 4Gb 580 954 -53 3c7 210 287 5 c 5 10 89 3 rc 116 25 I 64 73 47 3cs 2c I 356 383 s3 4 3 1 2cc I t 9 41 1 b 44 6 365 148 e7 110 2 4 3 l e a 187 661 3ez h k 10Fo 1 10 J I D 4 -8 4 135 -7 w 4 4 -. 4 211 - 5 298 - 4 4 d48 - 1 4 291 -2 b ea -I 4 2b9 I 4 223 C b 315 2 4 176 8 4 347 4 6 225 s 4 43b b 4 I 5 4 I 4 I l l I C 4 I45 -1 5 bC -b 5 9 3 - 5 5 8C - 4 3 29c - 3 5 351 - 2 5 121 -1 5 lb5 C 5 271 I 9 326 2 5 4 s 9 1 5 2IC 4 5U 52 6 5 L I t 1 5 2re I 5 141 I 4 i 2 e e 4 I I I 6 I i s c 5 5 74 -5 bU 4 1 - b 6 199 - 4 0 131 -1 6 I 9 3 -2 b 313 -1 b 21c C B Ib I b 212 2 6 211 3 b 291 * 6 212 6 6U 5C b b I 4 2 7 4 253 I 0 2 c t -4 7 110 -1 7u 38 -2 7 231 - 1 7 Ire C 7 255 I 7 154 2 7U 4 b 3 7 2 1 t 4 1 2 1 7 5 7 256 b 7 152 1 7 ' b 7 -1 8 123 c 180 1 8 153 2 I I69 3 8 19 4 t I 4 C I 8 3 -1 -b 16b -b - b 125 - 5 -6U 55 -4 -6 I 3 2 - 3 -* I82 - 2 -6 21b -1 - b 102 0 -6U 4 t 1 -6 lC9 -5 -5U 3b -1 - 5 104 - ? -5 143 -6 -5 PIC - 5 - 5 2bC - 4 - 5 15h -1 - 5 195 -2 -5 212 -1 -5 181 c - 5 I I t 1 -5 144 2 -5u 5s 3 -5 18P -10 - 4 ic1 -0 -4 139 -I - 4 IbC -1 -4U b t - ' b - 4 201 -5 - 4 411 - 4 - 4 2c2 - 3 - 4 zcc - 2 - 4 (It - I - 4 195 0 - 4 317 I - 4 I 8 3 2 .- 4 122 1 - 4 124 4 - 4 127 C - 4 23C - 1 0 - 3 129 - 9 - 3 2b2 - t - 9 29c -1 - 3 2Cl - 6 - 3 i l C -s - 3 c s - 4 - 3 4 1 3 - 3 -1 i 2 t - 2 - 3 IC? - 1 - 1 255 LOFc 2CI I 1 5 4s ZCb 1c2 119 1 C I t 4 2s I 1 C I 221 3b9 348 XI 4co 151 I 3 1 119 1 I 2 179 10 9b 95 26b 1% ICeI 157 3C 2 34 3 b C 7 191 7 I d 4 192 216 147 97 2cz 48 124 I97 31s 2b5 14 ZC3 199 2 t b zco 2 154 245 r2 I 118 38 2Cb 155 2 h I 149 17 214 231 254 156 bO 137 190 110 I10 91 I 5 9 It4 I 3 0 12 I35 183 24 1 I98 71 110 59 I04 I 3 8 22 3 270 l b 3 213 Z l C 171 107 14s 71 211 1 1 1 14b 1 0 3 82 I 1 8 4c9 I 8 4 194 eb 184 3 34 182 123 I I Y 128 154 1 3 1 267 111 15b 91 3b5 2C7 9 I 2bZ l e iInorg. Phys.Theor. 263 h k lOFo 0 - 3 132 1 - 3 487 2 -B 297 3 -3U b b 4 - 3 104 5 - 3 101 b -3 2Ob -11 - 2 b7 -10 - 2 I 5 2 -9 -2U 6 5 -0 -2 191 -7 -2 443 -6 -2 iqn -5 -2 131 -4 -2 182 - I -2 I45 -2 -2 571 - 1 - 2 371 0 -2 I92 I -2 24b 2 - 2 215 1 - 2 391 4 -2 170 5 -2lr b4 L -2u 5T 7 - 2 I b 7 -11 - 1 197 -10 - 1 207 -9 - 1 9 3 -7 -1 147 -b -1 384 -5 -I 256 -4 - 1 330 - 3 - 1 400 -2 - I 345 -1 -1 4b2 0 - I 3b8 1 -1u 49 2 - 1 136 3 - 1 .29b 4 - 1 296 5 - I 3bb b - I 87 7 -lU b0 -1 12b -11 0 I44 -10 0 229 -9 0 2bb -8 0 215 -7 OU b0 -6 0 379 -5 0 2bO -4 0 312 -3 0 428 -2 0 234 - 1 0 342 0 0 451 I 0 5 6 2 0 288 3 0 243 4 0 255 5 0 385 6 0 182 7 0 160 8 ov 55 9 0 0b -11 I 6 2 -I0 I 140 -9 I 303 -8 I 303 -7 1 138 -b I 190 -5 1 117 -4 I 51b -3 1 219 -2 1 241 0 I 220 1 I 722 2 I 340 3 I 254 4 1 I91 5 IU b3 L I 356 7 I 24s 0 I 105 9 I 132 -10 2 173 -9 2U 65 -8 2 241 - 1 2 318 -b 2 153 -5 2 29b - 3 z 148 -2 2 bb2 - 1 2 b l 0 I 330 I 2 2 7 3 z z 490 -n - I 192 1-1 I -4 2 171) lOFc I1 7 52 I 297 39 I04 94 2 3 6 V4 150 70 192 435 178 132 I72 126 b2b 3 79 202 222 I'D9 392 171 5 6 175 18? I94 91 18b 134 377 258 308 424 333 45 3 380 28 129 28 I 278 385 9 5 14 132 141 214 254 218 7b 398 2 b 3 308 437 24b 308 44b LO 314 23b 2b4 413 184 1 6 3 30 102 b8 130 303 307 1 3 1 191 1 I b 590 220 252 244 824 375 253 205 5 360 25b 103 I37 152 I 243 318 13b 292 I b l 250 798 5 347 2?4 4 3 1 LIT n i i reflections (marked h k 3 2 4 2 5 2b b 21.7 2 8 2 '9 2 -9 3L -a 3 -7 3 -b 3 - 5 3 -4 3 - 3 3 -2 3 - 1 3 0 % I 3 2 3 3 3 4 3 5 3 b 3 7 3 8 3 9 3 -9 4 -8 4 -7 4 -b 4 -5 4 -4 4 - 3 4 -2 4 - 1 4 0 4 1 4 2 4 3 4 u 4 4 5 4 L 4 7 4 0 4u 9 4u -8 5 -1 5 -6 5 - 5 5 -4 5 -3 5 -2 5 -1 5 0 5 1 5 2 5 3 5 4 5 5 - J b 5 7 5 8 5 -b b -5 b -4 bV -3 b -a b - I b O b 1 b U 2 b 3 b 4 b 5 b b bU 7 b 8 b - 3 7 -4 7 -2 7 - 1 7 0 7 I 7u 2 7 3 7 4 ? 5 7 b 7 - I 8 0 8 1 e 2 8 3 8U 4 8 L-4 -4 -b -3 -b -2 -b -8 -5 -1 - 5 -b -5 lOFo 557 IbS b l bb 240 30 I 19tl 5b '123 107 371 30 5 319 177 22 1 44 I 195 1 3 9 242 90 $04 3 7 4 100 11H 156 1711 I 9 1 123 I b0 26 3 199 339 145 l b 3 387 227 33b -59 2b7 365 2U3 229 5 1 4 3 1 b4 149 IZb I04 308 174 22b 127 20b 4 1 3 292 2 3H 128 Vb 320 1 7 3 1 b2 137 111 b I 217 112 241 70 312 365 175 86 b l 132 2 I U I.? I 1 5 3 173 29u 20b 5 8 8 7 119 341 210 I 1 9 1b9 2 3 1 111 40 14b 340 3134 in1 47 153 I n 8 118 LO2 241 lOFc 582 148 > 3 24 I 114 194 72 123 94 377 2 79 32 3 179 2 34 473 408 124 223 71 406 372 103 I 1 8 144 193 189 117 152 26 I 111 332 132 I 5 3 3 1 8 352 220 33b -b 254 357 291 225 4 1 51 179 148 I22 107 30 4 I 4 8 218 I 1 8 289 383 273 224 127 103 318 157 I 1 0 I24 1 LO 5 3 291 378 101 21 3 25 290 361 155 U2 7 3 134 24 3 106 I35 I74 275 205 bb 7h I l l 332 20b l l b 101 164 2 2 7 l b 3 5.2 15'3 I 6 D ICO 214 I d 8 1114 245 TABLE 3 h k lOFo - 5 -I 132 -4 -5 111 - 3 - 5 156 -1 -5 183 -1 - 5 2b9 0 -5 1 4 1 1 -5u 34 1 - 5 b4 -9 - 4 l b 9 - a - 4 112 -1 -4 lbn -b -4 214 - 5 -4 204 -4 - b 191 - 3 -4 b 3 -2 -4 244 - I -4 I 9 3 0 -4 208 I -4 1 3 E 2 - 4 4 1 3 - 4 71 4 -4 I49 -10 - 3 1 0 4 -9 - 3 184 -6 - 3 311 -7 -3 173 -b - 3 U 48 - 5 - 3 294 -4 - 3 354 -3 -3 286 -2 -3 25b - 1 -3 -137 0 - 3 1 - 3 1 - 3 3 -3 4 -3 5 - 3 -10 -2 -9 - 2 -8 -2 -7 -2 -b -2 - 5 -2u -4 -2 -3 -2 -2 -2 -1 -2 0 - 2 I -2u 2 - 2 3 - 2 4 -2 5 -2u b -2 -11 -1 -10 - I -9 -1 -8 -1u -7 - I -b - 1 - 5 - I -4 - 1 - 3 -1 -2 - 1 - 1 - I 0 - I 1 - 1 2 - 1 3 -1u 4 - I 5 - 1 h - 1 7 - 1 -11 0 -10 0 -9 0 - 0 .0 -7 0 -b 0 -5 0 -4 0 - 3 0 -2 0 -1 0 0 0 1 0 2 0 3 0 4 0 5 0 b 0 I 0 8 0 -10 I -9 I -B 1 -7 1 -b I - 5 1 -4 1 -3 1 1 35 291 199 180 b2 8 9 1 I2 137 259 24s 244 4 3 228 3b9 415 2 5 7 71 4 b 40b 331 22 1 39 -52 1b9 182 1 b l 45 I74 380 229 354 188 214 52 1 418 92 203 5 7 333 255 I07 55 109 1 bO 222 88 239 343 344 434 59 330 149 476 437 115 l l b 95 1d5 38b 125 104 135 183 359 140 I50 417 Id1 3b9 lOFc 1 I 1 LOO 15b I 7 7 271 139 50 12 I71 I 1 9 141 229 212 194 73 229 1-38 I98 235 49 7 1 1>7 200 I89 313 175 38 2H4 3 1 1 250 2 32 219 271 297 183 58 87 127 138 254 2 3 3 2 3 9 1b 114 3 3b 393 2 30 b2 4* 415 337 22b 47 -19 197 I b0 5 3 155 371 204 324 1 TO 204 508 407 9 5 19b 2 5 349 255 103 59 12 7 163 211 8 3 224 322 342 437 44 29b I41 4b9 442 111 8 0 175 401 119 103 149 17b 350 131 I58 + 38 I l b 301 -132 I eq izn U in Table 3) are included in the structure factor calculation, R becaine 0.070.ing scheme chosen was : The weigh- ZU-' = (7 - 0.1 Fo - 0.0013 Eo2 - 0.00002 FO3) (5 - 10 sin3 0/h2)/[1.2 - exp(-10 sin2 0/h2)] in order to produce a fairly constant average value of wA2 in the ranges of sin0 and Fo. In order to verify the results of the least-squares refine- ment, a difference Fourier synthesis was computed with (Continued) h k -1 I 1-1 1 0 1 1 1 1 1 3 1 4 1 5 1 b 1 7 1 8 1 -10 2u -9 2 -8 2 - 7 2 -b 2 -5 2 -4 2 - 3 2 -1 1 - I 7 u 2 1 2 2 2 3 2 4 2 5 2u b 2 7 2 b 2 -9 3 -1 3 -b 3 -5 3 -4 3 - 3 3 - 2 3 - 1 3 0 3 1 3 2 3 3 3 4 3 5 3 b 3 7 3u 8 3 -9 4 -8 4 - I 4 -b 4 -5 4 -4 4 -3 4 -2 4 - 1 4 0 4 1 4 2 4 3 4 4 4 5 4 b k 7 4 8 4 -8 5 -7 5 -b 5 - 5 5 -4 5 - 3 5 -2 5u - 1 5 0 5 I 5 2 5 3 5 4 5 5 5 b 5 7 5 u 5 -b b - 5 bU -4 b -3 b -2 b - 1 b O b 1 b 1 b 3 b 4 b % bU b b 7 b -4 1 -3 7v - 2 7 - I 1 0 7 - a 3u lOFo 160 509 2 > 0 410 2 I D b 1 I54 2 35 140 LO1 3 1 I59 200 1 3 b - 8 1 17b 3 b l 53e 3 b4 5 1 I I U 39 1 356 40b 47 b l 162 19fl 40 234 235 2b7 2 1 1 75 40 3 562 3 1 7 124 5 3 5b 509 2b5 153 47 b7 154 74 157 137 30b 3 6 4 181 194 9 1 317 35b 214 I 54 b2 250 32 7 129 160 I b I 8 3 126 l U 3 3UO 4 b bb 2 30 I b4 466 150 92 l 1 d 121 215 205 144 37 I14 2 3 1 217 251 b4 151 2 2 8 29 3 240 45 97 I 1 1 b0 3b 108 307 Lb7 1un i nu 2 o r l0Fc I14 -1001 5 l a 255 45 I 231 12 151 7 3b 11 3 I 1 4 4 1 1b1 264 282 114 - 12 101 3bb 567 3u5 40 I 3 0 394 3 38 410 .48 61 1bO 18b 121 55 244 229 24 3 2 14 70 400 LO5 322 128 39 49 515 270 145 44 70 8 b 111 I 3 0 315 358 I 78 170 I U5 88 319 360 217 1 48 b8 249 334 125 I50 I95 111 1 3 0 215 I89 393 40 b5 2 3 0 I55 488 251 84 I11 128 213 215 14b 27 123 2 4 0 2 74 243 b9 1b9 233 286 2 3 9 IlJ2 117 b l 46 209 1v2 258 16 1 1 2 7 3 7 4 1 5 7 b 1 -1 8 o n I 8 2 8 3 0 L.5 -b - 5 - 5 - 5 -4 - 5 -3 -5u -2 - 5 - 1 -5 -8 -4 - 7 -4 -b - 4 - 5 - 4 -4 -4 - 3 - b -2 - 4 - 1 -4 0 -4 I -4 2 - 4 -9 - 3 -8 -3 -I - 3 -0 - 3 -5 - 3 -4 - 3 - 3 - 3 -1 - 3 - I - 3 0 - 3 1 - 3 2 - 3 3 - 3 4 - 3 -10 -2 -9 -2 -(I -2 -1 -2 -b -2 -5 -2 -4 - 2 - 3 -2 -2 -2 -1 -2 0 -2u 1 -1 2 - 2 3 -2 4 -2 5 - 2 -10 - 1 -9 - I -n - I -7 - I -b - 1 -5 - 1 -4 - I -3 - 1 -2 -1 -1 -1 0 - 1 I -1 2 - 1 3 - 1 4 -1 5 - I b - I -10 0 -9 0 -7 ou -b 0 - 5 0 -4 0 -3 0 - 2 0 - I 0 0 0 L O 2 0 3 0 4 0 5 0 b 0 1 0 -10 1 -9 1 -8 I -7 1 -b I -5 1 -4 1 -8 n lOF0 I bbl -Q2 I l b 25e 111s I44 11 1 b5 21% DO i i n 147 I 8 8 L I P 24 1 7 1 I 7 b 111 5 7 148 194 2 LO ) i n 0 9 6 5 1 5 1 214 I 7 3 2 I b 1 90 1b5 134 1 1 4 32 I 284 124 91 101 1 1 6 251 122 101 74 1 b l 227 I n 1 4? I I 4 219 398 351 30 IZb 210 LO2 259 54 20 I 1 3 R 42 284 229 312 b I 3 2 9 420 4bb 317 3n 140 -nz 1 72 100 z n r 14b IbL I? I I71 9h 227 34 I 271 54 I -71 200 34 I d 4 5 I1 202 199 14b V l 291 I 9 8 193 I l J 2 I* $11 350 b5 10Fc 110 -20 115 141 I 0 3 165 I 9 9 1 9 0 I26 b ) 71 I b9 188 110 3b 1 b 8 In.! 1 1 1 5 1 155 3 l b 191 I > b8 257 203 I 7 3 715 19b 158 I W 202 l o b 251 117 88 100 219 2Sb 111 100 03 152 223 39b I 8 5 I 8 100 200 353 344 15 I LO 189 201 264 b I zoo 138 48 28b 221 306 b l 19 301 399 455 135 -4b l b 3 19b 284 I 4 3 I50 1 0 7 1 b 9 I 1 314 350 256 519 -25 I 8 4 I d 7 J 2 k 335 68 53 2Ob 20 P 155 U8 30 3 I an I n8 i n 3 100 200 3 9 3 h k - 5 I -2 I 1-1 I u 1 1 1 1 1 3 1 4 1 5 IU b l I I -LO 2 -9 2 -8 1 -7 2 -6 2 - 5 2 -4 2 - 3 1 - 2 1 - 1 2 0 2 I 2 2 2 3 2 4 2 5 2 0 1 I .! -9 3 - 0 3 -1 3 -b 3 -5 3 -4 3 - 3 JU -2 3 - 1 3 0 3 I 3 2 9v 3 3 4 3 5 3 6 3 1 3 -8 4 - ? 4u -0 4 -5 4 -6 4 - 3 4 -2 4 - I 4 0 4 I 4 2 4 1 4 4 4 5 4 6 4 1 4 -? 5 -b 5 -5 5 -4 5 - 3 5 -2 5 - I 5 0 5u I 5 2 5 1 5 4 5 5 5 b 5 7 4 -b b -5 b -4 bU -3 b -1 b - I b O b 1 b 2 b 1 b 4 b 5 a 6 b -4 1 - 3 I -2 I -I 1 0 1 I 7 1 1 3 7 4 1 5 ? lOFo 412 J 4 R -b5 300 509 331 10') 37 I 3 9 V 3 I05 14h l b b I / * 11, I YO 1 7 1 410 2 74 37 284 I r R 371 *e 1 2 1 I I h 54 4 3 1 34 1 5 3 5I *? 241 992 44 7 148 34 LU1 157 1 9 0 I 1 7 88 101 3 1 195 1uu 34 7 34? - 1 b l T7u 2 34 3 ? 3 3 38 -bD b 0 215 248 2Ob uo Pb 2 b l 217 250 159 1b 2 1 8 218 305 I 3 2 114 15 I 163 I28 96 33 197 1 5 1 214 117 120 95 $14 194 l b b 103 41 71 1 5 1 2b5 130 31 152 I55 116 ieq 291 410 2 5m 2b4 10Fc 4JV 2 $b l o l l -1v 291 I $Q 19 b $ 5 I ( h 1 r b ' I h I 1 1 19 3 Bhl I 10 I42 14 t Ih 419 2 b 3 29 2 1 5 1 1 % 15 I 'ab I, I 1 1 I 1 8 5 1 bII 2 34 141 399 3 I 21 2I* 4 1 I 6 1 1 1 4 5 60 11.9 l b ) 100 I 8 106 29 I V J ?O 3 3 4 I 34U - 1 LO 215 220 $511 l2b - I4 b4 1 35 ? I 3 1 3 1 I vv Ul 00 25 1 24 1 I54 I 1 215 210 I15 I I 3 I05 IS 7 I l l I so Vb I 1 21IV 2 I2 220 150 1 l b Vb 8 l i I O U 140 I01 4 1 I 1 141 111 140 5b t 4 3 ism 1un m v 2bn all the observed reflections and the structure factors calcu- lated in the last cycle of the refinement.The resulting map showed a peak of 1.5 eA-3 at the origin, and peaks of up to f 0.4 eA-3 distributed without a recognizable pattern through the cell. RESULTS The final atomic co-ordinates and anisotropic temperature factors with their standard deviations axe listed in Tables 1 and 2. The observed and calculated structure factors are shown in Table 3, and R as a function of the level on which264 J.Chem. SOC. (A), 1969 TABLE 4 Level R R hkO 0.106 0.111 h k l 0-072 0-082 hk2 0.067 0.078 hk3 0.053 0.068 hk4 0.050 0.070 hk5 0.051 0.064 TABLE 5 Interatomic distances (A) and angles (") with their standard deviations in parentheses (a) [Pd(SO,) 2(NH3) 212- Pd-S 2*294(6) S-Pd-N 90.9 (3) Pd-N 2*060(9) s-0 ( 1) 1 0 9.4 (5) s-0 (2) 1 -470 (8) 0 (2)-S-O (3) 109*2( 5) S-0 (3) 1.492 (7) 0 (3)-S-0 (1) 107.6(5) S-0 (av.) 1.483(5) 0-S-O(av.) 1 0 8.7 (2) Pd. - *0(1) 3-12 1 (1 1) Pd-S-0 (1) 109*5(4) Pd. - *0(2) 3-1 31 (1 1) Pd-S-0 (2) 110*7(4) Pd. - *0(3) 3*143(9) Pd-S-O(3) 110.4(4) S* * .N 3*108( 13) S.. .NII 3*058(13) N. * sO(1) 3.6 1 3 ( 1 6) N. * .0(213 2.9 1 8 ( 14) N.*0(3) 3.141(13) O(1). * .0(2) 2*412(14) O(1). * *0(2)* .0(3) 59.7(5) O(2). *0(3) 2.415(11) O(2)- - .0(3)* - -0(1) 60*1(5) O(3). - .0(1) 2*402(12) O(3). - -0(1)* * *0(2) 60*2(6) 1 -485 ( 1 1) 0 ( 1)-S-0 (2) (b) [NaO,]+ chains 3.702(12) Na. * mW(3). - *NaI 98.9(4) 3-956(11) Nam. . sW(2). - NaI 104-4(4) 2.368(10) O(2JII). .Na- - sW(3) 165.4(1.3) 2*470( 11) 2.342jiij 2-543( 11) 2.462( 13) 2-401 (13) 3*155(15) 3.7 83 ( 1 7) 3*397( 14) 3*455( 13) 3*207( 13) 3.392( 16) 3.991 (17) 3.166( 17) 3.703 (1 6) 3*574( 16) 3.068( 16) 3.444( 16) (G) Atoms possibly connected by hydrogen bonds W(1). * *O(lV) 2.882(14) O(lV)* - *W(l)* * -O(lII) 98.5(4) W(1). * .0(l1I) 2*838(12) W(2). * -0(lv) 2.846(14) O(lV)- .W(2)* * *0(3mI) 1174(4) W(2). - *0(3v11) 2.880(12) W(3). - .0(3V) 2.808(14) O(3V).aW(3). * -0(3I) 88*7(4) W(3). * *01,3I) 2.771 (15) N* - 'O(2II) 2-918(14) O(211)- .N* * sO(2III) S0*4(6) N. * -0(2II[) 3-063(16) O(2111). * -N* * *W(lVI) 136*4(7) N. * *W(lVr) 3*076(19) W(1n)- * -N. - *0(2II) 126-3(5) Atoms without superscripts have the co-ordinates of Table 1. Roman numerals as superscripts refer to the positions : I 1 - z , ---y,l--Z V x, y > z + 1 I1 - x , -y, -2 VI x, y j z - 1 I11 x, Y + 1, z VII 1 - x , - - l - y , l - - z IV x, y - 1, z the reflection was recorded is given in Table 4. Table 5 shows bond lengths and angles, together with their standard deviations. Figure 1 shows a view of the [Pd(S0,),(NH,),]2- ion. Figure 2 shows the structure projected down b and Figure 3 depicts an idealized view of the co-ordination around the Na+ ions, viewed along b.1.4 1.485 FIGURE 1 A view of the [Pd(S0,),(NH3),]2- ion u FIGURE 2 Projection down the b axis of the unit cell of G' = c . sin CL. Some of the possible Na,[Pd(S03),(NH,),],6H20; Numbering of atoms given in Table 5. hydrogen bonds are indicated with broken lines a' = a . sin y, DISCUSSION The crystal structure can be considered as composed of two types of units, the square planar trans- [Pd(S03),(NH3),]2- ion located at the corners of the unit cell, and chains of [NaO,]+ distorted octahedra running parallel to the b axis in the middle of the cell. The co-ordination around each sodium atom consists of (i) the oxygen atom 0(1) from one of the sulphite groups; (ii) the water molecule W(1); (iii) two water molecules, W(2I) and W ( 2 9 , related by inversion plus translation along b ; and (iv) two centrosym- metrically related water molecules, W (3) and W (39.Each of these octahedra shares two edges with neigh- bouring octahedra, one edge being common to two centrosymmetrically related octahedra [edge W(3)-Inorg. Phys. Theor. W(3I)], the other being comiiion to two octahedra related by inversion plus translation [edge W(2I)-W(2III)]. Each of the [Pd(S0,),(NH,),]2- units contributes its two O(2)-type oxygen atoms to two different chains, the chains being thus connected along the (101) direction by these ions and the combination of chains and [Pd (SO,) , (NH,) ,] 2- ions forming two-dimensional sheets FIGURE 3 An idealized view of a chain of [NaO,]+ polyhedra as viewed along b which are parallel to the (101) plane. Hydrogen bonds are possible between neighbouring sheets. These bonds are between the following pairs of atoms: W(1). .O(lV), \V(2). .0(lv) and W(3). - aO(3v). The crystal struc- ture can therefore be envisaged as being formed of parallel sheets which are hydrogen bonded to each other. lo H. C. Freeman and M. R. Snow, A d a Cryst., 1965, 18, 843. l1 M. J. Bennett, F. A. Cotton, D. L. Weaver, R. J. Williams, l2 S. Oi, T. Kawase, K. Nakatso, and H. Kuroya, Bull. Claem. and W. H. Watson, Acta Cryst., 1967, 23, 788. SOC. Japan, 1960, 33, 861. 265 The tram-[Pd(S0,),(NH,),]2- has the expected square planar geometry, the S-Pd-N angle being of 90.9 3 0.3". The Pd-N bond distance is 2-060 & 0.009 A, similar to that found in other palladium@) complexes having trans-metal-nitrogen bonds, i.e. 2.02 A in l o [Pd(C,,H,N,),]. As in [PdSO,(NH,),], the sulphite group is bonded through sulphur and keeps a pyramidal shape. The Pd-S bond length is 2.294 & 0.006 A in [Pd(SO,),(NH,),I2-, significantly longer than that of 2.245 & 0.006 A determined for this bond in [PdSO,(NH,),] and within one estimated standard deviation of the Pd-S bond lengths determined in l1 [Pd(DMSO),Cl,] (DMSO = dimethyl sulphoxide) and in l2 [Pd(SCN,H,),Cl,], 2.299 j= 0.002 and 2.30 A respectively. This comparison indicates that the sulphite group has a structural trans-effect which could be due to x bonding or to a ts effect as postulated13 for platinum(I1)-phos- phorus bonds. The weakening of the Pd-S bond in the di- as compared with the mono-sulphitopalladate, does not have a significant effect on the dimensions of the complexed sulphite groups. The average S-0 distance and the average 0-S-0 angle are 1.49A and 108.6" in the monosulphite-compound,l 1.485 A and 110.3" in [Co(en),S0,NCS],14 and 1.483 & 0.005 A and 108.7 & 0.2" in [Pd(S0,),(NH,)2]2-. The stretching frequencies are also nearly the same in these compound~.~*~~ Thus, we conclude that the geometry of the sulphite group, when bonded through sulphur to the metal, is deter- mined by the cr bond to the metal, as discussed in the structure determination of [PdS0,(NH3),].1 \Ye thank the Director and Staff of the Departmento de CAlculo of the Universidad Central de Venezuela, for assis- tance and allocation of computer time, and Dr. R. Levitus for supplying crystals of the complex. Part of the X-ray equipment used in this work, was purchased with funds from a Ford Foundation Grant. The following programs written for the IBM System 360 were used and are gratefully acknowledged : C. T. Prewitt, B. Foxman and L. N. Becka, 1967, SFLSS, a full matrix crystallographic least squares pro- gram; A. Zalkin and B. Foxman 1967, FORDAP, general Fourier Synthesis; M. E. Pippy and F. R. Ahmed, 1968, SCAN, scan of bond distance and angles; M. V. Capparelli, 1968, CELL 02, cell constants from high level Weissenberg photographs; D. P. Schoemaker and S. R. Srivastava, 1963, VIBELL, anisotropic temperature factor interpreting program. [S/1187 Received, August 14th 19681 l3 A. Pidcock, R. E. Richards, and L. M. Venanzi, J . Chenz. SOC. 14 S . Baggio and L. N. Becka, to be published. l5 If. E. Baldwin, J . CJzem. SOC., 1961, 3123. ( A ) , 1966, 1707.

 

点击下载:  PDF (732KB)



返 回