首页   按字顺浏览 期刊浏览 卷期浏览 Optimization of the InAsxP1−x&sngbnd;Cs2O Photocathode
Optimization of the InAsxP1−x&sngbnd;Cs2O Photocathode

 

作者: L. W. James,   G. A. Antypas,   J. J. Uebbing,   T. O. Yep,   R. L. Bell,  

 

期刊: Journal of Applied Physics  (AIP Available online 1971)
卷期: Volume 42, issue 2  

页码: 580-586

 

ISSN:0021-8979

 

年代: 1971

 

DOI:10.1063/1.1660067

 

出版商: AIP

 

数据来源: AIP

 

摘要:

Zinc‐doped InAsP liquid epitaxial layers with bandgaps between 0.4 and 1.34 eV were grown on InAs and InP substrates. The grown layers were 2–4‐&mgr; thick with mirror‐smooth as‐grown surfaces. Preliminary phase diagram calculations based on Darken's quadratic formalism to describe the ternary liquid in equilibrium with the pseudobinary solid are in good agreement with the bandgaps of the grown layers determined by photoluminescence. The InAsxP1−x&sngbnd;Cs2O heterojunction barrier height as a function of composition has been measured using photoemission. For InAs the barrier is at 1.24 eV, and it decreases with decreasing arsenic concentration to a value of 1.16 eV for InAsP with a 1.27‐eV bandgap. For InAsxP1−xsamples with bandgaps in the range 1.17–1.34 eV, high escape probabilities and efficient photoemission were observed. A typical cleaned (not cleaved) sample with a bandgap of 1.19 eV has a sensitivity of 600 &mgr;A/lm, 70 &mgr;A with a lumen source through a 2540 ir filter, a quantum efficiency of 1.5% at 1.06 &mgr;, and a &Ggr; escape probability of 0.08. This is the most sensitive infrared photocathode yet produced. All processing steps seem compatible with tube production. The effects of the heterojunction barrier are clearly visible with this material. The escape probability drops by an order‐of‐magnitude when the InAsxP1−xbandgap is reduced to 0.05 eV below the barrier.

 

点击下载:  PDF (470KB)



返 回