首页   按字顺浏览 期刊浏览 卷期浏览 Molecular Biology of the Voltage‐Gated Potassium Channels of the Cardiovascular System
Molecular Biology of the Voltage‐Gated Potassium Channels of the Cardiovascular System

 

作者: STEVEN L. ROBERDS,   KAREN M. KNOTH,   SUNNY PO,   T. BLAIR,   PAUL B. BENNETT,   ROBERT P. HARTSHORNE,   DIRK J. SNYDERS,   MICHAEL M. TAMKUN,  

 

期刊: Journal of Cardiovascular Electrophysiology  (WILEY Available online 1993)
卷期: Volume 4, issue 1  

页码: 68-80

 

ISSN:1045-3873

 

年代: 1993

 

DOI:10.1111/j.1540-8167.1993.tb01214.x

 

出版商: Blackwell Publishing Ltd

 

关键词: potassium channel cloning;Xenopus oocytes;antiarrhythmic drugs;delayed rectifier current;transient outward current;action potential;quinidine

 

数据来源: WILEY

 

摘要:

Cardiovascular K+Channel Molecular Biology. K+channels represent the most diverse class of voltage‐gated ion channels in terms of function and structure. Voltage‐gated K+channels in the heart establish the resting membrane K permeability, modulate the frequency and duration of action potentials, and are targets of several antiarrhythmic drugs. Consequently, an understanding of K+channel structure‐function relationships and pharmacology is of great practical interest. However, the presence of multiple overlapping currents in native cardiac myocytes complicates the study of basic K+channel function and drug‐channel interactions in these cells. The application of molecular cloning technology to cardiovascular K+channels has identified the primary structure of these proteins, and heterologous expression systems have allowed a detailed analysis of channel function and pharmacology without contaminating currents. To date six different K+channels have been cloned from rat and human heart, and all have been functionally characterized in eitherXenopusoocytes or mammalian tissue culture systems. This initial research is an important step toward understanding the molecular basis of the action potential in the heart. An important challenge for the future is to determine the cell‐specific expression and relative contribution of these cloned channels to cardiac exc

 

点击下载:  PDF (5538KB)



返 回