首页   按字顺浏览 期刊浏览 卷期浏览 A Proportional Hazards Model for the Subdistribution of a Competing Risk
A Proportional Hazards Model for the Subdistribution of a Competing Risk

 

作者: JasonP. Fine,   RobertJ. Gray,  

 

期刊: Journal of the American Statistical Association  (Taylor Available online 1999)
卷期: Volume 94, issue 446  

页码: 496-509

 

ISSN:0162-1459

 

年代: 1999

 

DOI:10.1080/01621459.1999.10474144

 

出版商: Taylor & Francis Group

 

关键词: Hazard of subdistribution;Martingale;Partial likelihood;Transformation model

 

数据来源: Taylor

 

摘要:

With explanatory covariates, the standard analysis for competing risks data involves modeling the cause-specific hazard functions via a proportional hazards assumption. Unfortunately, the cause-specific hazard function does not have a direct interpretation in terms of survival probabilities for the particular failure type. In recent years many clinicians have begun using the cumulative incidence function, the marginal failure probabilities for a particular cause, which is intuitively appealing and more easily explained to the nonstatistician. The cumulative incidence is especially relevant in cost-effectiveness analyses in which the survival probabilities are needed to determine treatment utility. Previously, authors have considered methods for combining estimates of the cause-specific hazard functions under the proportional hazards formulation. However, these methods do not allow the analyst to directly assess the effect of a covariate on the marginal probability function. In this article we propose a novel semiparametric proportional hazards model for the subdistribution. Using the partial likelihood principle and weighting techniques, we derive estimation and inference procedures for the finite-dimensional regression parameter under a variety of censoring scenarios. We give a uniformly consistent estimator for the predicted cumulative incidence for an individual with certain covariates; confidence intervals and bands can be obtained analytically or with an easy-to-implement simulation technique. To contrast the two approaches, we analyze a dataset from a breast cancer clinical trial under both models.

 

点击下载:  PDF (1304KB)



返 回