首页   按字顺浏览 期刊浏览 卷期浏览 The general motion of a circular disk in a Brinkman medium
The general motion of a circular disk in a Brinkman medium

 

作者: J. Feng,   P. Ganatos,   S. Weinbaum,  

 

期刊: Physics of Fluids  (AIP Available online 1998)
卷期: Volume 10, issue 9  

页码: 2137-2146

 

ISSN:1070-6631

 

年代: 1998

 

DOI:10.1063/1.869735

 

出版商: AIP

 

数据来源: AIP

 

摘要:

Solutions of the Brinkman equation for the arbitrary motion of a circular disk are obtained which examine for the first time the effect of particle orientation on the particle drag and torque. Four elementary motions are studied analytically: broadside translation, edgewise translation, rotation about the axis of symmetry, and rotation about the diameter. These motions are closely related to the analogous unsteady oscillation of a disk in Stokes flow [Zhang and Stone, J. Fluid Mech. (1998)]. However, our solution procedure differs in that the problems are formulated using a general solution of the Brinkman equation and are solved by reducing the dual integral equations arising from the mixed boundary conditions in the plane of the disk to a Fredholm integral equation of the second type. Asymptotic results for the drag and torque are derived for both small and large values of the permeability parameter &agr; defined bya/Kp,whereais the radius of the disk andKpthe Darcy permeability. In contrast to the Stokesian motion of a disk, where the drag differs by only a factor of 1.5 for broadside and edgewise translational motion, and is isotropic for rotation about any axis through its center, there is a large difference in the drag and torque with increasing &agr;. In a Brinkman medium, the drag on the disk is proportional to &agr; for edgewise motion and to&agr;2for broadside motion and the torque is proportional to&agr;2for out-of-plane rotation and to &agr; for in-plane rotation. For intermediate values of &agr;, the integral equations are solved numerically for the drag and torque exerted by the porous medium on the disk. These results are of importance in probing the microstructure of the porous medium and thus provide a way to test the validity of the effective medium approach. ©1998 American Institute of Physics.

 

点击下载:  PDF (816KB)



返 回