首页   按字顺浏览 期刊浏览 卷期浏览 Chapter 9. Transition elements. Part III: Groups VIIA, VIIIA, and IB
Chapter 9. Transition elements. Part III: Groups VIIA, VIIIA, and IB

 

作者: P. Thornton,  

 

期刊: Annual Reports on the Progress of Chemistry, Section A: Physical and Inorganic Chemistry  (RSC Available online 1978)
卷期: Volume 75, issue 1  

页码: 289-310

 

ISSN:0308-6003

 

年代: 1978

 

DOI:10.1039/PR9787500289

 

出版商: RSC

 

数据来源: RSC

 

摘要:

Transition Elements Part 111 Groups VIIA VIIIA and IB By P. Thornton 1 General The Angular Overlap approach to bonding in transition metal compounds has been reviewed] readably and another review2 deals with the method’s applications to d-d spectra and indicates future use in circular dichroism e.s.r. and magnetism. A survey3of ligand field parameters of halides of divalent first row metals exposes many errors hitherto as ‘unscathed as Dorian Gray’. In a review4 of complexes of tertiary phosphines it is said that the role of r-bonding may be overstated in analyses of bond lengths and n.m.r. spectra. The stereochemistry of bis(tridentate) complexes has been predicted from cal- culations of electron pair repulsions the mer-isomers normally being more stable but for ligands with small bites the unsymmetrical fuc-isomer will distort to a rectangular bipyramid or trigonal prism.’ 19’ S.A. R. Knox R. F. D. Stansfield F. G. A. Stone M. J. Winter and P. Woodward,J.C.S. Chem. Comm. 1978,221. 199 M. M. Hunt W. G. Kita B. F. Mann and J. A. McCleverty J.C.S. Dalton 1978,467. *O0 M. M. Hunt W. G. Kita and J. A. McCleverty J.C.S. Dalton 1978 475. M. M. Hunt and J. M. McCleverty J.C.S. Dalton 1978,480. ’02 M. Berry S. G. Davies and M. L. H. Green J.C.S. Chem. Comm. 1978 99. ’03 F. G. N. Cloke M. L. H. Green and G. E. Morris J.C.S. Chem. Comm. 1978,72. J. K. Burdett Adv. Inorg. Chem. Radiochem. 1978,21 113. D. W. Smith Structure and Bonding 1978,35 87. D. R. Rosseinsky and I. A. Dorrity Coord. Chem. Rev. 1978 25 31.R. Mason and D. W. Meek Angew. Chem. Internat. Edn. 1978,17 183. M. C. Favas and D. L. Kepert J.C.S. Dalton 1978,793. F. A. Hart P. Thornton and D. A. Rice A thorough molecular orbital study of electron transfer reactions finds among other conclusions that inner sphere processes can be of two types with smooth electron transfer when a bridging ligand is transferred or a sudden electron jump in which no atom transfer is necessary.6 The electrochemical oxidation of metals provides a convenient route to halides7" or complexes of anionic bidentate oxygen The first solid complexes of the nucleosides uridine and thymidine have been isolated with divalent Mn Fe Co Ni and Cu the former ligand probably co-ordinating through a C=O unit and some- times also the ribose residue but the latter only through the ribose unit,8 (see also refs.72 and 153). 2 Manganese and Rhenium The weakly antiferromagnetic cations [Mn2(tren)2(NCX)2]2' (X = 0 or S) contain trigonal bipyramidal units linked by hydrogen bonds described as 'outer sphere dimers'. The magnetism and complex e.s,.r. spectra of these compounds have been described as has the e.s.r. of Mn-doped [Zn(Me6tren)I]+ whose high value of 0.20 cm-' for D is attributed to the trigonal bipyramidal structure.' A further e.s.r. study of 0 adducts of Mn" porphyrins showed that the 0 co-ordinates in the symmetrical bidentate configuration as O2 -,with the metal in oxidation state 1v.l' The polymeric imidazolate complex [Mn(im)TPP] [TPP = tetraphenylporphyrinate] is believed to contain alternate high- and low-spin Mn"' atoms with long (2.275 A) and short (2.181A) bonds to N(irn)." The antiferromagnetic cations [Mn2L4O2I3+ [L = bipy or phen] gre shown by e.s.r.and magnetochemical measurements to have distinct Mn"' and Mn'" Another report lZc of these e.s.r. spectra is shown"" to contain a Mn" impurity but that paper describes other reactions of these structures and indicates the possibility of such species as photosystem I1 exhibiting tautomerism as in equation (1) 0 0 0 An octahedron of six Re atoms is found13 in the Re6S8 clusters of Cs4Re6S13 and M4Re6Slz [M = Na or K]. These also contain S and S units and are made by 13" the reaction of Re with KRe04 (or ReS2) M2CO3 and S or by 136 the reaction of Re with M2C03 and H2S.The red crystals become black over a period of weeks with no change in the cell parameters possibly by oxidation as an S-S bond break^.'^" J. K. Burdett Inorg. Chem. 1978,17 2537. ' (a)J. J. Habeeb L. Neilson and D. G. Tuck Inorg. Chem. 1978,17,306;(6)J. J. Habeeb D. G. Tuck and F.H.Walters J. Coord. Chem. 1978,8 27. * M. Goodgame and K. W. Johns J.C.S. Dalton 1978 1294. E.J. Laskowski and D. N. Hendrickson Inorg. Chem. 1978,17,457. lo B. M.Hoffman T. Szymanski T. G. Brown and F. Basolo J. Amer. Chem. SOC.,1978,100,7253. l1 J. T. Landrum C. A. Reed K. Hatano and W. R. Scheidt J. Amer. Chem. SOC.,1978,100,3232. (a) S. R. Cooper G. C. Dismukes M. P. Klein andM. Calvin J. Amer. Chem. SOC.,1978,100,7248;(6) M. Inoue Bull.Chem. SOC.Japan 1978,51,1400;(c)M.M.Morrison and D. T. Sawyer Inorg. Chem. 1978 17 333. l3 (a)S. Chen and W. R. Robinson J.C.S. Chem. Comm. 1978,879;(b)M. Spangenberg and W. Bronger Angew. Chem. Internat. Edn. 1978,17 368. Transition Elements 291 3 Iron Ruthenium and Osmium Iron vapour reacts with MeN(PF2) to form [Fe{MeN(PF2)2}4] in which one of the ligands is bidentate giving the iron atom five-co-0rdinati0n.l~ The singlet-quintet spin equilibria of Fe" compounds are becoming more clear. A Mossbauer study of [Fe,Zn(l-,,(2-pic)3]C12-EtOH, [2-pic = 2-picolylamine (1); x 0.151 showed that with more dilute samples the change of spin state occurred at a lower temperature and the slope of the conversion function was less steep the conclusion reached being that the spin change was a cooperative pro~ess.'~ Contrary to earlier reports salts of [Fe(pyim)J2' [pyim = 2-(2-pyridyl)-imidazole (2)] and its benzimidazole analogue do show spin equilibria in solution laser Raman tempera- ture-jump kinetics giving the rates for the forward and reverse processes.QC",-NH2 (1) (2) Comparison with other Fe" spin equilibria shows that steric effects on ligands may hinder the reorganization occurring during the spin change and retard the process. 16a Mossbauer spectra of the benzimidazole analogue indicate that the structure of the lattice changes with temperature.16' A pulsed ultrasonic study of two other complexes showing singlet-quintet equilibria shows that the quintet state is up to 22 cm2 mol-' larger than the singlet and the authors propose that the change in volume determines the rate of spin-state isomerizations.l7 These results agree with crystallographic findings that for Fe'' complexes of sexadentate ligands such as (3) the Fe-N bonds are 0.17 A and the Fe-0 bonds 0.04 8 shorter in the low spin hydrated C1- and NO3- salts than in the high spin PF6- salt.18 -X.CR:N*C2H4.NH.C2H4*NH*C2H4.N: CR*X-(3) X = CH:CMe.O or CCl:CMe.O R = Me (4) X = 0-C6H40 R =H Extended X-ray absorption fine structure (EXAFS) measurements confirm" that at pH 1.2 the chief FeI" aquo species is [(H20)4Fe(g-OH)2Fe(OH2)4]4+, with an Fe-Fe separation of 2.91 A and FeOFe angle of 101". The antiferromagnetic pyridinium salt of the [C13FeOFeC13]2- anion is the first FeI'I complex in which all the non-bridging ligands are monodentate and the first Fe-0-Fe system with tetra- hedral co-ordination of the Fe atoms.The J value of -92 cm-' is similar to that given in other FeOFe complexes which show five- or six-co-ordination.20 The magnetic susceptibilities and Mossbauer spectra of some iron(II1) fluorinated monothio-P- diketonates could only be explained by temperature-dependent crystal field l4 P. L. Timms and R. B. King J.C.S. Chem. Comm. 1978,898. Is P. Gutlich R. Link and H. G. Steinhauser Znorg. Chem. 1978 17 2509. l6 (a) K. A. Reeder E. V. Dose and L. J. Wilson Znorg. Chem. 1978,17,1071;(6)R. L. Martin I. A. G. Roos D. M. L. Goodgame and A. A. S. C. Machado Austral. J. Chem. 1978,31,437.J. K. Beattie R. A. Binstead and R. J. West J. Amer. Chem. SOC.,1978 100 3044. l8 E. Sinn G. Sim E. V. Dose M. F. Tweedle and L. J. Wilson J. Amer. Chem. SOC., 1978,100,3375. 19 T. I. Morrison A. H. Reis G. S. Knapp F. Y. Fradin H. Chen and E. Klippert I.Amer. Chem. SOC. 1978,100,3262. 20 M. G. B. Drew V. McKee. and S. M. Nelson. J.C.S. Dalton. 1978. 80. 292 F. A. Hart P. Thornton and D. A. Rice parameters.21 The magnetic anisotropy of some iron(II1) dithiocarbamates shows that the trigonal distortion parameter has the opposite sign to that previously expected and that it is necessary to include a parameter representing the ratio of the partition functions of the doublet and sextet states.22 Ultrasonic relaxation studies of [Fe(sa12trien)]N03-$H20, (sa12trien= (4)] show that the doublet-sextet relaxation time is shorter than for the Fe" spin equilibria probably because the d5complexes have mixing of states at the crossover points.23 Haem Proteins and Porphyrin Complexes.-The single crystal polarized electronic spectra and the c.d and m.c.d.spectra of oxy- and deoxy-haemoglobin show 7 and 4 transitions respectively between 4000 and 33 000 cm-'. These were correlated with Huckel MO calculations on corresponding [Fe(porphyrin)(imidazole)] complexes.24 There have been many exciting developments in the chemistry of 'picket-fence' porphyrin complexes. In [Fe(TpivPP)(OH2)].tht [TpivPP = (5a); tht = tetrahydro-thiophene] Fe atoms are co-ordinated by the four porphyrin nitrogens a water molecule and one oxygen of a peptide link from a neighbouring picket fence to give a polymeric ~tructure.~~ A footnote to this paper gives the crystallographic result that O2 is monodentate in [Fe(TpivPH)(tht)(02)].2tht,a model for cytochrome P,, camphor hydroxyla~e.~' The full X-ray crystallographic determination of the structure of [Fe(TpivPP) (1-Meim) (02)].&,H6.$( 1-Meim) [1-Meim = l-methyl-imidazole] has been reported (R =0.109).Dioxygen is monodentate but with two crystallographically independent sites for the terminal 0atom the 0-0 distance is given as 1.15 and 1.17 A and the FeOO angle as 133 and 129". The Fe atom is 0.03 8 out of the N plane toward the O2ligand.26 The X-ray determination of the structures of [Fe(TpivPP) (2-Meim)]-EtOH and its O2 adduct provide the first comparison in similar model complexes for oxy- and deoxy-haems.In this complex the O2adduct shows an 0-0distance of 1.22 Aand an FeOO angle of 129",but the Fe atom is 0.086 toward the 2-Meim ligand not the 02.This system is thought to be a good model for the T state of haem~globin.~~ Under some conditions solid R R (5) a; R = o-C6H4"H.C0.CMe3 b; R = o-C~H~.NH.CO.(&~~) 21 M. Das,R. M. Golding and S. E. Livingstone Transition Metal Chem. 1978 3 112. 22 P. Ganguli and V. R. Marathe Znorg. Chem. 1978 17 543. 23 R. A. Binstead J. K. Beattie E. V. Dose M. F. Tweedle and L. J. Wilson J. Amer. Chem. SOC.,1978 100.5609. 24 W. A. Eaton L. K. Hanson P. J. Stephens J. C. Sutherland and J. B. R. Dunn I.Amer. Chem.SOC. 1978,100,4991. " G. B. Jameson W. T. Robinson J. P. Collrnan and T. N. Sorrell Znorg. Chem. 1978 17,858. 26 G. B. Jameson G. A. Rodley W. T. Robinson R. R. Gagne C. A. Reed and J. P. Collman Znorg. Chem. 1978,17,850. 27 G. B. Jameson F. S. Molinaro J. A. Ibers J. P. Collman J. I. Brauman E. Rose and K. S. Suslick J. Amer. Chem. SOC.,1978,100,6769. Transition Elements 293 [Fe(TpivPP)L] complexes [L is a substituted imidazole] show cooperative effects in their reaction with 02,in the manner of haemoglobin.28 Some new picket fence porphyrins have been synthesized. Ligand (5b) contains four pyridine groups and these can co-ordinate another metal atom to give complexes of the pairs of metal atoms Cu-Cu Ni-Ni Ni-Cu Fe"'-Cu Fe"'-Fe"' and Cu-Co"'.The Cu-Cu complex has the e.s.r. spectrum of a triplet state and the Cu-Cu separation derived from the spectrum agrees with that given by a molecular The 'clamshell' biporphyrin (6)has been prepared. Its FeII and Mn'I complexes (7) are magnetically dilute suggesting that the strongly antifer- romagnetic cytochrome oxidase does not have the imidazolate bridge of the model complex. A new ligand contains an imidazolate group which coordinates to a second Fe atom to give a polymeric structure (8). A number of derivatives of this type were made by substitutions at the peptide N atom and in the imidazolate ring in order to vary the strain on the Fe-im bond. This gave different effects on the affinity of the complexes for 0 and C0.30 -?N <:J+HN u \ CO / N-N (N W N* NiN = tetraphenylporphyrinate residue (P4 N u (6) The 'H n.m.r.spectrum of the Fe"' porphyrin complex [Fe(TPP)I] shows this is five-co-ordinate but addition of Me2S0 gives the first high spin six-co-ordinate iron porphyrin. The authors suggest that the behaviour of metalloporphyrins is strongly influenced by non-bonding interactions between the porphyrin and any additional li~ands.~' The oxidation of ascorbic acid by the Fe"' complex [Fe{(4Me-~y)~por}- (hiSt)ZI [(4Me-~y)~por = 5,10,15,20-tetrakis-(4-N-methylpyridyl)porphine] follows the same rate law as oxidation by ferricytochrome c with the process first involving dissociation of one histidine ligand.32 The preparation and structure determinati01-1~~" ofthe complex [Fe(L)(H,O)] (BF4)2 (L= (9)]shows that high spin Fe" can fit into a hole the size of a porphyrin cavity but the larger Mn2' ion cannot.33b *' J.P. Collman J. I. Brauman E. Rose and K. S. Suslick Proc. Nut. Acud. Sci. U.S.A. 1978 75 1052. 29 D. A. Buckingham M. J. Gunter and L. N. Mander J. Amer. Chem. SOC.1978,106,2899. 3" J. Geibel J. Cannon D. Campbell and T. G. Traylor J. Amer. Chem. Soc. 1978 100,3575. 31 M. Zobrist and G. N. La Mar J. Amer. Chem. SOC.,1978,100 1945. 32 J. C. Oxley and D. L. Toppen Inorg. Chem. 1978,17,3119. 33 (a) M. M. Bishop J. Lewis T. D. O'Donoghue P. R. Rsithby and J. N. Ramsden J.C.S. Chem.Comm. 1978 828; (b) M. M. Bishop J. Lewis T. D. O'Donoghue and P. R. Raithby ibid. p. 476. F. A.Hart P. Thornton and D. A. Rice / /\ IY I1 I1 N N / \ Me Me-N 6-d (9) Iron-Sulphur Proteins and Model Complexes.-The m.c.d. spectra of Fe4S4-containing proteins vary with the oxidation state of the cluster but not with the nature of the protein. The authors claim m.c.d. spectra are better able to distinguish Fe2S2 clusters from Fe4S4 clusters than electronic absorption or c.d. The magnetism and e.s.r. and Mossbauer spectra of tetra-alkylammonium salts of the [Fe4S4(SR),I3- anions are similar to those of reduced ferredoxins. The X-ray determination of the structure of the (Et,NMe)' salt shows the Fe4S4 cube has a Dad deformation but is elongated whereas the dianion is compre~sed.~~ Polarography of [Fe4S4(SR)4]6- [R = C2H4C02- or C3H6C02-] gives similar results to ferredoxins suggesting that the presence of a charge close to the Fe4S4 core does not change the redox properties but there are changes when the hydrogen-bonding power of the solvent changes so that hydrogen-bonding needs to be considered in analyses of the chemistry of ferredoxin~.~~ P.J. Stephens A. J. Thomson T. A. Keiderling,J. Rawlings K. K. Rao and D. 0.Hall Proc. Nut. Acad. Sci. USA.,1978,75 5273. 3s E.J. Laskowski R. B. Frankel W. 0.Gillum G. C. Papaefthymiou,J. Renaud J. A. Ibers and R. H. Holm,J. Amer. Chem. Soc. 1978,100 5322. 36 R. Maskiewin and T. C. Bruice J.C.S. Chem. Comm. 1978,703. Transition Elements Synthetic studies of model complexes continue. All combinations of [Fe4)d(YPh)4]2-,[X Y = S Se] have been prepared.37 An X-ray determination shows the X =Se Y = S ion has the expected Fe4Se4 cube so that if Se occurs in Fe proteins it is thought more likely to be in an Fe4Se4 cubic structure than in a cysteine-type The 'H n.m.r.spectrum suggests the Fe4Se4 cube is larger than the Fe4S4 The [Fe4S4(SR)4]2- anions react with electrophiles to give eartial or complete substitution of SR groups by C1 02CMe 02CCF3 or 03SCF3 groups these reactions being relevant to possible roles of these clusters in hydro- genase or nitrogena~e.~' A dramatic advance in our understanding of nitrogenase comes from the syntheses and X-ray characterization of two model complexes (10) in which three sulphur ligands bridge two [Fe3S4(SR),Mo] The physical properties of these complexes have been described the EXAFS of (lOa)"" being similar to that of nitrogenase.(lO)a;X=SEt,Y=S b;X=Y=SPh A welcome development in this area comes from kinetic studies of the oxidation of reduced Fez ferredoxins by various familiar Co"' complexes in order to discover the specific reaction sites and the effects of charged reagents. Positively charged oxidants react at the same single site but this is different from the probably different sites attacked by [C~(acac)~] and [C~(edta)]-.~' Iron Transport Proteins (Siderophores).-Stability constants of FexxK complexes with various catechols have been measured leading to the conclusion that the tricatechol enterobactin the siderophore for Fe in enteric bacteria has a formation constant of at least lo4' for Fe.4'a In contrast to results from hydroxamate-based siderophores electrochemical studies show the enterobactin complex cannot be directly reduced by biological reducing agents and the reduction must proceed by prior hydrolysis of the enter~bactin.~'~ 37 (a) M.A. Bobrik E. J. Laskowski R. W. Johnson W. 0.Gillum J. M. Berg K. 0.Hodgson and R. H. Holm Znorg. Chem. 1978,17 1402; (b)G. Christou B. Ridge and H. N. Rydon J.C.S. Dalton 1978 1423. 38 R. W. Johnson and R. H. Holm J. Amer. Chem. Soc. 1978,100,5338. 39 (a)T. E. Wolff J. M. Berg C. Warrick K. 0.Hodgson R. H. Holm and R. B. Frankel J. Amer. Chem. SOC.,1978 100,4630; (b)G. Christou C. D. Garner and F. E. Mabbs Inorg. Chim. Acta 1978,28 L189; (c) G. Christou C.D. Garner F. E. Mabbs and T. J. King J.C.S. Chem. Comm. 1978 740. 40 F. A. Armstrong and A. G. Sykes J. Amer. Chem. Soc. 1978,100 7710; F. A. Armstrong R. A. Henderson M. G. Segal and A. G. Sykes J.C.S. Chem. Comm. 1978,1102. 41 (a) A. Avdeef S. R. Sofen T. L. Bregante and K..N. Raymond J.Am& Chem. Soc. 1978,100,5362; (b)S.R. Cooper J. V. McArdle and K. N. Raymond Proc. Nut. Acad. Sci. USA. 1978.75 3551. F. A. Hart P. Thornton and D. A. Rice crystal log rap hi^^^" and magnetic and electr~chemical~~~ studies of hydroxamate and thiohydroxamate complexes again show how the replacement of 0by S confers greater stability for Fe" over Fe"'. Ruthenium and Osmium.-Interest in ruthenium chemistry has centred round the ammines especially in polynuclear complexes with mixed oxidation states and in photochemical processes.During the reduction of [Ru(NH3),(py)l3' by [Fe(CN)6I4- a new absorption band at 915 nm was attributed43 to the outer-sphere intervalence transition of the ion pair [Ru"(NH3)5(py).Fe"'(CN)6]-. The photolysis of aqueous [Ru(NH3)J2+ gives substitution of NH by H20 for irradiation of d-d transitions and oxidation to RU"' when excitation is to the charge-transfer-to-solvent (CTTS) state. The ions [Ru(NH3),(H20)J2+ and [R~(en)~]~' were also studied and it was found easier to establish the mechanism here than in phenanthroline complexes where the CTTS bands are obscured by other absorption^.^^" Similar results were for [OS(NH,),(N,),]~' and [OS(NH,),(N,)]~'. Dimeric complexes [Ru2L2]"+ [L is the macrocyclic ligand (11);n = 0-21 have been prepared and physical and chemical studies suggest the complexes contain Ru-Ru bonds without bridging ligand~.~' 4 Cobalt and Rhodium The new binuclear complex (12a) contains a new As3 equilaterally triangular bridging group.Magnetochemical measurements show the presence of one unpaired electron on each Co. An Ni analogue has been prepared.46 Cobalt (11) Compounds.-Ca[Co(edta) (H20)]-4H20contains six-co-ordinate Co in contrast to the seven-co-ordinate FeIrl and Mn" analogues. The five co-ordinating donor atoms of edta are up to 2.23 8 distant from the Co atom; the 'unco-ordinated' 0 atom is 2.72A from Co. The chelate rings adopt unusual conformation^.^^ Chlorine reacts with a Co-containing Na zeolite to give a remarkable Co-C12 complex with a C1-Cl bond length of 2.52 A [cf.1.99 A in C12(g)J.The absence of a 42 (a) K. S. Murray P. J. Newman B. M. Gatehouse and D. Taylor Austral.J. Chem. 1978,31,983;(b) K. Abu-Dari S. R. Cooper and K. N. Raymond Znorg. Chem. 1978 17 3394. 43 J. C. Curtis and T. J. Meyer J. Amer. Chem. SOC. 1978 100 6284. 44 (a) T. Matsubara and P. C. Ford Znorg. Chem. 1978 17 1747; (b)T. Matsubara M. Bergkamp and P. C. Ford ibid.,p. 1604. 45 L. F. Warren and V. L. Goedken J.C.S. Chem. Comm. 1978,909. 46 M. Di Vaira S. Midollini L. Sacconi and F. Zanobini Angew. Chem. Znternat. Edn. 1978,17,676. 47 A. I. Pozhidaev Ya. M. Nesterova T. N. Polynova M. A. Porai-Koshits and V. A. Logvinenko J. StructurulChem. U.S.S.R..1977,lS.329. Transition Elements p p =MeC(CH2PPh2)3 (12)a; M =Co X =As b; M=Ni X=P colour change was taken to show no oxidation to CoT1I had The five- [nnp = Et2NC2H4NHC2H4PPh2], co-ordinate complex [CO(~~~)(NCS)~] known to show a doublet-quartet spin equilibrium changes structure from its high tempera- ture trigonal bipyramidal configuration towards a square pyramidal shape at 120K.49 It is interesting to compare this result with this year's developments in understanding Fe" spin equilibria. Polynuclear Co" complexes continue to fascinate magnetochemists. A new theory of magnetic exchange in high spin Co" dimers has been developed"" and appliedSob to [C0,(4Me-quin)~(O,CPh)~] using measurements of anisotropy of susceptibility. Another five-co-ordinate but trigonal bipyramidal Co" dimer [Co2L6F2] (BF4)2 L I /L F -CO L\ I I \L LL (13) (13),[L = 3,5-dimethylpyrazole] is barely antiferr~magnetic.~~ A heterobimetallic complex (14a) containing Co has been studied.In one reportS2" the Cu atom is given as four-co-ordinate and the Co as six-co-ordinate but in the other reports2' the positions are exchanged. As the magnetic properties fit for low-spin Co" the latter assignment may be correct unless the samples are isomers. The complex is strongly ferromagnetic as Cu" and low-spin Co" have orthogonal magnetic orbitals. In other conditions (not given) a contribution from a CO"~-CU~ configuration is suggested with a claim that conversion to this form is given by heating in vacuum (to an unspecified temperature).s2b An improved synthesis of the picket fence porphyrin complex [Co(TpivPP)] has been found giving the isomer with all the 'pickets' on the same side of the porphyrin.The values of AHeand AS* for the reaction of O2with [Co(TpivPP)(N-Meim] are like those for Co myoglobin and it is suggested that the picket fence affects the 48 V. Subramanian K. Seff and T. Ottersen J. Amer. Chem. SOC.,1978,100,2911. 49 D. Gatteschi C. A. Ghiiardi A. Orlandini and L. Sacconi Inorg. Chem. 1978 17 3023. 50 (a) P.D. W. Boyd M. Gerloch J. H. Harding and R. G. Woolley Proc. Roy. SOC.,1978 A360,161; (b) P. D. W. Boyd J. E. Davies and M. Gerloch ibid. p. 191. 51 J. Reedijk J. C. Jansen H. van Koningsveld and C. G. van Kralingen Znorg. Chem.1978,17 1990. 52 (a) M.Mikuriya H. Okawa S. Kida and I. Ueda Bull. Chem. SOC.Japan 1978,51,2920;(6)0.Kahn R. Claude and H. Coudanne J.C.S. Chem. Comm. 1978 1012. E A. Hart P. Thornton and D. A. Rice (14) a; M = CU(H~O)~, M' =Co or M = CO(H~O)~, M' = Cu b; M =VO M' =Cu(Me0H) solvation of the c~mplex.'~ The new picket fence porphyrin (5b) is reported54 to form only a 1:1complex with Co2+ in which remarkably only the four pyridine rings co-ordinate in contrast to the bimetallic complexes described el~ewhere.~~ Elec-tronic spectral and 'Hn.m.r. relaxation studies on Co bovine carbonic anhydrase show the Co atoms to have pseudotetrahedral co-ordination from one water molecule and three nitrogen donors. Some inhibitors replace the water molecule others form five-co-ordinate com~lexes.~~ Cobalt(II1) Compounds.-The reaction of CN- ions with [(NH3),Co(NCMe)l3' gives the new complex (15).The ligand is easily converted to alanine so this may be a general method for synthesis of amino-acids from nitriles and of labelling a carboxy- group.56 Kinetic studies of Co"' complexes abound. The aquation of trans-[CO(~~)~(NO~)(NCM~)]~+ is accelerated by the addition of 18-crown-6 with which MeCN forms a complex.57o The photochemistry of [Co(NH3),(NCR)l3' [R =Me or Ph] gives a clear demonstration of the variety of products which can be obtained when different transitions are irradiated.57b The reduction of Co"' complexes by Eu" or Cr2+ is accelerated by the addition of 2,4-pyridinedicarboxylicacid which is believed to be reduced to a radical by Eu*+ this radical then reacting with the Co"' complex; for reductions by Cr2+ the active intermediate is a radical bound to Cr'11.57c 53 J.P. Collman,J. I. Brauman K. M. Doxsee T. R. Halbert S. E. Hayes and K. S. Suslick,J. Amer. Chem. SOC., 1978,100,2761. 54 C. M. Elliott J.C.S. Chem. Comm. 1978,399. 55 I. Bertini G. Canti C. Luchinat and A. Scozzafava J. Amer. Chem. SOC., 1978,100,4873. 56 I. I. Creaser S. F. Dyke A. M. Sargeson and P. A. Tucker J.C.S. Chem. Comm. 1978,289. " (a) G.L. Blackmer M. I).Nordyke T. M. Vickrey R. A. Bartsch and R. A. Holwerda Inorg. Chem. 1978,17,3310;(6)A. W.Zanella K. H. Ford and P. C. Ford ibid. p. 1051;(c)Y.-T. Fanchiang J. C.-K. Heh and E. S. Gould ibid. p.1142. Transition Elements The electronic spectra of metal-0 complexes have been reviewed with emphasis on Co'" complexes.58o Raman and i.r. spectra of 0,-and OZ2-bridged binuclear complexes give clear indications of bonding in the 0-0 and Co-0 units,586 as do resonance Raman The i.r. and U.V. spectra of [C~(bipyridylamine)~(O~)] (clod)suggests the amine and 0,'-are each bidentate; it is unusual to find a monomeric Co"' -0,complex in the peroxide form.58d Rbodium.-SCF-Xa-SW calculations on [Rh2(02CH)4] and [Rhz(OzCH)4(H20)2] suggest the Rh-Rh bond is a single one with a short Rh-Rh distance being related to a long Rh-OH bond because the cr and dr Rh-Rh orbitals are antibonding for Rh-OH2.59a During an electrochemical study of various [Rh2(02CR)4] compounds a stable Rh~""' dimer was found.values were correlated with the Taft CT parameter of the R group and the donor power of the 5 Nickel Palladium and Platinum Nickel.-The new binuclear complex (12b) contains the new P3 equilaterally tri- angular bridging group. Magnetochemical measurements show the presence of one unpaired electron per dimer.60 The single crystal e.s.r. spectrum6' of the Nix*" complex [Ni2Brz(napy),]' (BPhJ [napy = 1,8-naphthyridine (16)] shows this to be strongly ferromagnetic with J greater than 300 cm-'. A new Ni" bridged complex (17),containing an equilateral triangle of planar Ni atoms bridged by two S atoms (S-S =2.70 A) has been characterized.62 An X-ray /-I / 'PEt, Et,P Et,P Et,P i.r. and 31P n.m.r. study of [MTMePPh,) (NCS)J complexes [M=Ni Pd or Pt] suggests that for Ni electronic effects require N-co-ordination of NCS- that Pt is S-co-ordinated unless steric effects prevent this but that for Pd steric and electronic '* (a) A.B. P. Lever and H. B. Gray Accounts Chem. Res. 1978,11,348;(6)T.Shibahara and M. Mori Bull. Chem. Soc.Jupan 1978,51,1374;(c) C.G. Barraclough G. A. Lawrance and P. A. Lay Znorg. Chem. 1978,17 3317; (d) W.L.Johnson and J. F. Geldard ibid. p. 1675. 59 (a) J. G. Norman and H. J. Kolari J. Amer. Chem. Soc. 1978,100,791;(b)K. Das,K. M. Kadish and J. L. Bear Znorg. Chem. 1978,17,930. 6o M. Di Vaira C. A. Ghilardi. S. Midollini and L. Sacconi J. Amer. Chem. Soc. 1978 100 2550. A. Bencini D.Gatteschi and L. Sacconi Znorg. Chem.. 1978 17 2670.62 C.A. Ghilardi S.Midollini and L. Sacconi Znarg. Chim. Acra 1978.31. L.431. 300 E A. Hart P. Thornton and D. A. Rice effects are balanced. In solution all 6 isomers of the Pd and Pt compounds were detected with the cis-NCS form predominating for Pd and the trans-mixed form predominating for Pt but in the solid state the Ni complex is trans-N-bonded the Pd complex is trans-S-bonded and the Pt complex is ~is-N-bonded.~~ The polarized single crystal electronic spectrum at 8 K of [Ni( 1,5-diazacyclo- o~tane)~]~+ shows the planar Ni" atom to have about 20% of 4s character in the '3&' orbital.64 X-Ray determination of the structure of the Ni" complex of y-camphor- quinonedioxime (18) shows that the ligand unusually for a dioxime co-ordinates through one N and one 0 atom.65 The thermochromic salts [R,NH~4-.,]z'[NiC14]2- have been described.They change from yellowish octahedral polymers to blue tetrahedral monomers at 70-230 "C higher transition temperatures being given with larger R groups and lower values of n when there are more hydrogen bonds to break.66 Varying the carboxylate anion in aqueous solutions of [Ni(en)3]2'[RC02]z- affects the conformational equilibria of the chelate rings as shown by 'H n.m.r. the anion effects being attributed to H-bonding in ion The X-ray-deter- mined structure of the BPh4- salt (as the 3Me2S0 solvate) shows the cation to have the A66A configuration the configuration of lowest energy but which is rarely found as hydrogen-bonding normally stabilizes other conformation^.^^^ Oxidation of Ni" oligopeptide complexes gives Ni"' species; the authors believe bispeptide Ni'" complexes would form readily to give a relatively stable reservoir of biological oxidizing power.68 Controlled potential electrolysis studies of [Ni(TTP)] led to discussion of electron transport in haem proteins with the conclusion that electron changes in the porphyrin .rr-system were imp~rtant.~~ Ni and Cu complexes of porphyrins have been prepared in which a nitrene unit is inserted between one pyrrole nitrogen and the metal; the X-ray-determined structure of the Ni complex shows the Ni to be out of the N4 porphyrin plane by 0.21 A with the extra nitrogen 0.94 A from the plane on the same side as the Ni atom.The plane of the pyrrole ring bonded to the extra nitrogen makes a large dihedral angle of 40.5"with the porphyrin N4 plane." Palladium.-Conductance and 'H n.m.r.studies have analysed equilibria in the substitutions of phosphines (L')for other phosphines (L)or halides (X) in [PdL2X2].71 63 J. J. Macdougall,J. H. Nelson M. W. Babich C. C. Fuller and R. A. Jacobson Inorg. Chim. Actu 1978 27 201. 64 M.A.Hitchman and J. B. Bremner Inorg. Chim. Actu 1978 27 L61. M.S.Ma R. J. Angelici D. Powell and R. A. Jacobson J. Amer. Chem. SOC.,1978,100,7068. " J. R.Ferraro and A. T. Sherren Inorg. Chem. 1978 17,2498. '' (a) R. E. Cramer and J. T. Huneke Znorg. Chem. 1978 17,64; (b) ibid.. p. 365. A. G. Lappin C. K. Murray and D. W. Margerum Znorg. Chem. 1978,17 1630. " E. C. Johnson T.Niem and D. Dolphin Cunud. J. Chem. 1978,56,1381. 70 H.J. Callot B. Chevrier and R. Weiss J. Amer. Chem. Soc. 1978 100,4733. 71 W.J. buch and D. R. Eaton Znorg. Chim. Actu 1978,30 243. Transition Elements 301 Many nucleoside complexes [PdLClJ have been isolated; in aqueous solution they react with other nucleosides (L') to form [PdL(L')3]2+ or [PdL(L')C12] and dimerise at pH 9-10 with the nucleoside becoming bide~~tate.~~ Oxidative addition of Cl2 to [PdCl4I2- has been found to proceed first by oxidation to Pd'" followed by slow substit~tion.~~ Platinum.-According to i.r. and n.m.r. spectra acetylacetonate is a monodentate ligand in [Pt(~ip)~(acac)~], [pip =piperidine] and bidentate and anionic in [Pt(pip)2(acac)]+(acac)- formed from the former on crystallization from The X-ray-determined structure of [Pt(p-H) (SiEt3){P(C6H,l)3}]2 shows the SiPtP planes have a dihedral angle of 21"; the H atoms Were not located in the X-ray work nor found at the expected region in the 'H n.m.r.spectrum but deuteration and bridge-cleavage reactions suggest that the PtH2Pt bridges are ~nsymrnetrical.~~ In [Pt2X2(p-H)(p-Ph2PC2H4PPh2)2]+, [X=H or Cl] i.r. and 'H and 31P n.m.r. spectra suggest Pt H--Pt bonding with the prediction of unusual chemical and catalytic The resonance Raman spectra of the solid miried-valence salts [Pt(EtNH2)4X2]2+ [Pt(EtNH2)4]2+ 4Y-,[X Y =C1 Br or I] gave information on the lengthening of the PtIV-X bond in the excited The structures of M2[Pt(CN)4]Clo.3 (M =Rb or NHJ determined by neutron diffraction show unequal alternating distances in the Pt-Pt linear chain; larger cations give greater expansion of the lattice and lower electric Raman and Raman difference spectroscopy have been used to study complexes of deprotonated 5'-guanosine monophosphate with compounds containing cis-or tran~-[(NH~)~Pt"] units and a variety of co-ordination patterns were found for this7'" and other 79b nucleotides.Linear and circular dichroism studies show that [Pt(en)(bipy)12+ forms complexes with B-form DNA in which the plane of the cation is parallel to the planes of the bases but [Cu(bipy),12+ is co-ordinated by a nitrogen from the bases." The X-ray photoelectron spectrum (XPS) of a cis-PtCl,-'sitting atop' porphyrin a possible intermediate in metalloporphyrin synthesis shows Pt is co-ordinated to two adjacent not opposite nitrogens.8' 6 Copper Silver and Gold Copper.-The X-ray determination of the structure of Li2Cu5(Si2O7) has led to a recalculation of the effective ionic radii of Cu2+ in various geometries.82 The direct thermochemical determination of the enthalpy of formation of Cu and Zn complexes 72 N.Hadjiliadis and G. Pneumatikakis J.C.S. Dalton 1978 1691. 73 R. J. Mureinik and E. Pross J. Coord. Chem. 1978,8 127. 74 S.Okeya F. Egawa Y. Nakamura and S. Kawaguchi Inorg. Chim. Acta 1978,30 L319. 75 M.Ciriano M. Green J. A. K. Howard J. Proud J. L. Spencer F. G. A. Stone and C. A. Tsipis J.C.S. Dalton 1978 801. 76 M. P. Brown R. J. Puddephatt M. Rashidi and K.R. Seddon J.C.S.Dalton 1978 516. 77 R. J. H. Clark and P. C. Turtle fnorg. Chem. 1978,17 2526. 78 J. M. Williams P. L. Johnson A. J. Schultz and C. C. Coffey fnorg. Chem. 1978,17,834;P. L.Johnson A. J. Schultz A. E. Underhill D. M. Watkins D. J. Wood and J. M. Williams ibid. p. 839. 79 (a)G. Y. H. Chu S. Mansy R. E. Duncan and R. S. Tobias J. Amer. Chem. Soc. 1978,100,593;(b)S. Mansy G.Y.H. Chu R. E. Duncan and R. S. Tobias ibid. p. 607. B.NordCn fnorg. Chim. Acta 1978 31 83. 81 J. P. Macquet M. M. Millard and T. Theophanides J. Amer. Chem. SOC.,1978,100,4741. K.Kawamura A.Kawahara and J. T. Iiyama Acta Cryst. 1978 B34 3181. F. A. Hart P. Thornton and D. A. Rice with tetra-aza macrocyclic ligands has shown that the macrocyclic effect is caused by a combination of a favourable entropy term with an enthalpy term which is normally favourable but depends on the size of the metal ion and the aperture in the ligand.83 There has again been much magnetochemical work on polynuclear Cu" complexes.Two groups have published angular overlap treatment of Cu" dirner~.~~ [Cu(N-salgly)(H,O)] (19) which is known to form a polymeric structure by co-ordination of the 'free' glycine 0 atom to a neighbouring Cu exhibits spin cou- pling through hydrogen bonds to neighbouring polymer chains rather than within a polymer chain; the authors predict long-range magnetic ordering in strong applied fields and unusual adiabatic Like its Co analogue complex (14b) has unpaired electrons in orthogonal orbitals and is therefore ferromagnetic.86 The type I11 copper proteins are believed to contain two interacting Cu" atoms and groups of model compounds have been prepared.Complex (20) is the first to show two sequential one-electron transfers at identical potentials." The dimeric cation [Cuz(Me4dien)z(im)(C104)2]+, [Me4dien= 1,1,7,7-tetramethyldiethylene-triamine; im =imidazolate] shows similar magnetic and e.s.r. properties to bovine erythrocyte superoxide dismutase in which Zn is replaced by Cu; X-ray studies show the Cu atoms to be square pyramidally co-ordinated with (C104) as the axial ligand."" Many binuclear Cu" complexes with bridging imidazolate bi-imidazolate or their derivatives have been studied as models for superoxide dismutase the exchange varying with the ligands bond angles and nature of the ground state.886 83 A.Anchini L. Fabbrizzi P. Paoletti and R. M. Clay J.C.S. Dalton 1978 577. 84 A. Bencini and D. Gatteschi Znorg. Chim. Acta 1978,31,11;M.Gerloch and J. H. Harding Proc. Roy. Soc.. 1978,Am,211. W.E.Estes and W. E. Hatfield Znorg. Chem. 1978,17 3226. 86 0.Kahn P. Tola J. Galy and H. Coudanne J. Amer. Chem. SOC., 1978,100,3931. " D. E. Fenton R. R. Schroeder and R. L. Lintvedt J. Amer. Chem. SOC.,1978,100,1931;D.E. Fenton and R. L. Lintvedt ibid. p. 6367. (a) C.-L.O'Young J. C. Dewan H. R. Lilienthal and S. J. Lippard J. Amer. Chem. SOC.,1978,100 7291;(b)M.S.Haddad and D. N. Hendrickson,Inorg. Chem. 1978.17.2622. Transition Elements 303 A series of papers studies the role of Cu” complexes in the treatment of rheumatoid arthritis concluding that mixed complexes with histidinate and cystinate are important and that uncharged complexes must be formed in order to pass through cell membranes.*’ The dimer [Cu(S’-ump) (dpa) (Hz0)]2-5Hz0 [5’-ump = uridine 5‘-monophosphate; dpa =dipyridylamine] is antiferromagnetic though the authors had expected ferr~magnetism.’~“ X-Ray determination of its structure shows the bridging nucleotide to form Cu-0-P-0-Cu bridges with no inter- action between Cu and the pyrimidine group.However the analogous cytosine complex may have co-ordination by the base and n.m.r. and pK studies suggest ump may co-ordinate through its base as well as its phosphate group in other Cu compIexe~.’~~ This has been a good year for copper proteins.There have been particularly dramatic advances in type I (blue e.s.r.-active) proteins. The X-ray determination of the structure of plastocyanin shows the single Cu atom is co-ordinated in a distorted tetrahedron by S atoms from cysteine thiol and methionine thioether groups and by N atoms from two histidine groups.” A similar conclusion is reached by the X-ray study of a~urin.’~ Thus there is no co-ordination by deprotonated peptide groups as previously proposed. Consistent with these results the EXAFS spectrum of oxidized azurin shows the ‘blue’ site to contain a short Cu-S (thiolate) bond (2.10 A) and two Cu-N (imidazole) bonds (1.97 A),and there may be a Cu-S (methionine) interaction at a longer distance.” The resonance Raman spectra of various CuII complexes with SR-or SRz ligands indicate the presence of Cu- methionine bonds in blue copper proteins but stellacyanin which contains no methionine may have co-ordination by a disulphide group.94 A welcome start has been made on kinetic studies of the reactions of oxidized or reduced plastocyanin with common reducing or oxidizing agent^.'^ The e.s.r.spectrum of ceruloplasmin and its derivatives in which the type I sites are bleached suggests that the type I1 sites (e.s.r.-active but not ‘blue’) contain a Cu atom co-ordinated by 3 (or possibly 4) N in a tetragonal environment; this site may co-ordinate up to two F-ions probably in axial position^.'^ The e.s.r. and electronic absorption spectra of complexes of half -oxidized haemocyanin containing Cu’ and CU” with CN- NOz- 02CMe- or N3- suggest the ligands and presumably also 02 co-ordinate in an equatorial site.” The X-ray-determined structure of [Cu(1-Meim)(HzNCzH4SCzH4NH2)]2’ shows this cation already known to have a similar d-d-spectrum to the type I1 protein galactose oxidase to have distorted 89 G.E. Jackson P. M. May and D. R. Williams,J. Inorg. NuclearChem.,1978.40,1189 and five following papers. 90 (a)S. L. Lambert T. R. Felthouse and D. N. Hendrickson,Inorg. Chim.Actu 1978,29,L223; (b)B. E. Fischer and R. Bau Inorg. Chem. 1978 17 27. 91 P. M. Colman H. C. Freeman J. M. Gus,M. Murata V. A. Norris J. A. M. Ramshaw and M. P. Venkatappa Nature 1978,272 319. 92 E. T. Adman R. E. Stenkamp L. C. Sieker and L. H. Jensen J.Mol. Bid 1978,123 35. 93 T. D. Tullius P. Frank and K. 0.Hodgson Proc. Nut. Acad. Sci.U.S.A. 1978,75,4069. 94 N. S. Ferns W. H. Woodruff D. B. Rorabacher,T. E. Jones and L. A. Ochxymowyn,J. Amer. Chem. Soc. 1978,100 5939. 95 M. G. Segal and A. G. Sykes J. Amer. Chem. SOC.,1978,100,4585. % J. H. Dawson D. M. Dooley and H. B. Gray Proc. Nat. Acad. Sci. U.S.A. 1978,75,4078. 97 R. S. Himmelwright N. C. Eickman and E. I. Solomon Biochem. Biophys. Res. Comm. 1978,81,237. F. A. Hart P. Thornton and D. A. Rice square pyramidal co-ordination for CU.~~~ However kinetic and e.s.r. studies on galactose oxidase have been interpreted as showing this to be a Cu"' species and the authors suggest Cu"' may be involved in other enzyme reactions.98b Silver.-When Ag absorbed on an Ar matrix at 10-20K is irradiated on the 2S1/2+zP3/2,1/2 transition clusters of Ag atoms of known size (Ag2-Ag,) can be prepared; the technique is called 'cryophotoclustering'.The electronic spectra of the clusters show a progression from molecular to bulk properties as the size of the PPh / Ph,P (21) cluster increases.99 A new cluster structure [(Ph3P)4Ag4(WS4)2] (21) has been identified in which WS4*- acts as a tridentate 1igand.l" Gold.-The first example of Au' stabilized by two N-donors has been described. The imido ligand (22) is probably labile in vivo and may be useful in inserting Au' into proteins in such applications as anti-inflammatory chemotherapy.l0la Other Au' and Au"' amino-acid complexes have been studied to further this topic.lOlb The Moss-bauer spectra of [Au,,(PR,)~X,] [R =Ph or 4-C1C6&; X = SCN I or CN] can be curve-fitted to show the three different Au sites; improved preparation of these complexes by evaporation of Au metal is described."* 7 Appendix Papers not Treated in Detail The table which follows summarizes important papers for which space limitation precludes detailed discussion.98 (a) J. F. Richardson and N. C. Payne Inurg. Chem. 1978,17,2111; (b)G.A. Hamilton P. K. Adolf J. de Jersey G. C. Du Bois G. R. Dyrkacz and R. D. Libby J. Amer. Gem. SOC.,1978,100,1899. 99 G.A. Ozin and H. Huber fnorg. Chem. 1978,17,155. loo A. Muller H. Bogge and E. Koniger-Ahlborn J.C.S. Chem. Comm. 1978,739. (a)N. A. Malik P. J. Sadler S.Neidle and G. L. Taylor J.C.S. Chem. Cumm. 1978 711; (b) D. H. Brown G. C. McKinley and W. E. Smith J.C.S. Dalton 1978 199. lo* F.A. Vollenbroek P. C. P. Bouten; J. M. Trooster J. P. van den Berg and J. J. Bour Inorg. Chem. 1978 17 1345. Transition Elements Compound General Metalloporphyrins Macrocyclic complexes Square planar complexes SO complexes NO3- complexes Spin labels Rhenium Re,Cl,(diphos) Re2X4(PR3)4 (X= halogen) K&F Re203(py)4C12 Iron [Fez(N0)6]2+*2PF6-[Fe(CN),(diamine)]'-cis-Fe( hen),(NCBPh,) [FeL,+.2N03-[L =(23)l Fe2S.3 Fe20L2(Hz0)4 (L= 4-CI-pyridine-2,6-dicarboxylate) 305 Comments Reference Short reviews 103 Short review especially on Co and Ni 104 Review of substitution mechanisms 105 Pt metals short review comparison with NO 106 Pt metals review 107 Review on bioinorganic and e.s.r.aspects 108 3-co-ordinate Mn 109 Mn equivalent oxidation state &I3 110 Reversibly binds 0,in Me,SO 111 Really [(NC),Mn0Mn(CN),l6- 112 Staggered triple Re=Re bond 113 Mechanisms of electrochem. oxidations 114 Compressed [ReFJ4- octahedron 115 Revised structure 116 Fe=Fe double bond 117 C.d. assignment of low spin Fe" 118 Simultaneous spin and structure change; 'H n.m.r. 119 Singlet %quintet shows hysteresis 120 First pure preparation 121 Fe-0-Fe angle does not affect magnitude of antifer-122 romagnetism H aN '03 J. W. Buchler Angew. Chem. Internat. Edn. 1978,17,407;J. W. Buchler W. Kokisch and P.D. Smith Structure and Bonding 1978 34 79. '04 D. H. Busch Accounts Chem. Res. 1978,11,392. R. J. Mureinik Coord. Chem. Rev.. 1978,25 1. D. M. P.Mingos Transition Metal Chem. 1978,3 1. lo' P. B. Critchlow and S. D. Robinson Coord. Chem. Rev. 1978,25,69. S. S. Eaton and G. R. Eaton Coord. Chem. Rev. 1978,26,207. '09 D. C. Bradley M. B. Hursthouse K. M. A. Malik andR. Moseler TransitionMetal Chem. 1978,3,253. A. R. E. Baikie M. B. Hursthouse D. B. New and P.Thornton J.C.S. Chem. Comm. 1978,62. '11 K. D. Maggers C. G. Smith and D. T. Sawyer J Amer. Chem. SOC. 1978,100,989. '12 G. Trageser and H. H. Eysel Znorg. Nuclear Chem. Letters 1978,14,65. '13 F. A. Cotton G. G. Stanley and R. A. Walton Inorg. Chem.. 1978,17 2099. '14 P. Brant D. J. Salmon and R.A. Walton J. Amer. Chem. SOC. 1978,100,4424. '15 G. R. Clark and D. R. Russell Acra Cryst. 1978. B34 894. 'I6 C. J. L. Lock and G. Turner Canad. J. Chem. 1978,56,179. '" M. Heberhold and R. Klein Angew. Chem. Internat. Ed. 1978,17,454. '" M. Goto M. Takeshita and T. Sakai Inorg. Chem.. 1978 17 314. K. F. Purcell and J. P. Zapata J.C.S. Chem. Comm. 1978,497. G. Ritter E. Konig W. Irler and H. A. Goodwin Znorg. Chem. 1978,17 224. lZ1 A. H. Stiller B. J. McCormick P.Russell and P. A. Montano J. Amer. Chem. SOC.,1978,100,2553. lZ2 C. C. Ou R. G. Wollmann D. N. Hendrickson J. A. Potenza and H. J. Schugar J. Amer. Chem. Soc. 1978,100,4717. 306 E A. Hart P. Thornton and D. A. Rice Compound Comments Reference Iron-cont. Fe porphyrins EXAFS spectra on natural and synthetic compounds 123 Fe(TpivPP)(1-Meim)O Resonance Raman spectrum shows vFe-0 at 124 568cm-' (cf oxyhaemoglobin 567cm-I) indicates multiple Fe-0 bonding Fe"' porphyrins Mossbauer spectra clarified; 125 X-ray structures 5-or 6-co-ordinate 126 Fe(TPP)CI Forms [Fe(TPP)(im),]+ with imidazoles before spin 127 (TPP = tetraphenylporphyrin) changes Fe"'-haem Reaction with CN- studied by n.m.r.128 Fe"'-porphyrin-Models for haemoglobin mutants 129 phenoxide complexes Fe-S proteins I9F n.m.r. analysis of core extrusion reactions; milk 130 xanthine oxidase contains 2Fe,S units Protein (111) of Azotobucter uinelundii contains 1 Fe,S 131 and 1 other unit not identified [Fe,S,(SR),]"-(n = 2,3) Thorough 'H n.m.r. study and comparison to oxidised 132 [Fe,S,X412-(X =C1,Br; n = 2,4) and reduced ferredoxins Preparation and properties 133 Oxyhemerythrin Single crystal polarized electronic spectrum shows 0 134 monodentate to 1 of 2Fe"' Protocatechuate 3,4-dioxygenase Resonance Raman spectrum indicates Fe-tyrosine bond 135 Fe-bipyrimidine-Cu complex Model for cytochrome oxidase 136 Fez(rd3 Hydroxamate siderophore; unusual A absolute 137 [ra =rhodotorulate,(24)] configuration 00 (24) Fe H-C-NMe Fluopsin siderophore X ray structure shows A 138 ( sI :--',0I )3 absolute configuration Ruthenium NO complexes Review one of group in memory of A.D. Allen 139 bidentate SO complex 140 [RuCl(NO)(SO,)(PPh,),].CH,CI Second (SO) S.P.Cramer J. H. Dawon K. 0.Hodgson and L.P. Hager J. Amer. Chem. SOC., 1978,100,7282. J. M. Burke J. R. Kincaid S.Peters R. R. Gagne J. P. Collman and T. G. Spiro J. Amer. Chem. Soc. 1978,100,6083. D. H. Dolphin J. R. Sams T. B. Tsin and K. L. Wong J. Amer. Chem. SOC.,1978,100 1711. lZ6 F. W. B. Einstein and A. C. Willis Inorg. Chem. 1978,17,3040;M. E. Kastner W. R. Scheidt T. Mashiko and C. .A. Reed J. Amer. Chem. SOC.,1978 100 666; T. Mashiko M. E. Kastner K. Spartalian W. R. Scheidt and C. A. Reed ibid. p. 6354. R. F. Pasternack B. S.Gillies and J. R. Stahlbush J. Amer. Chem. SOC.,1978 100,2613. J.-T. Wang H. J. C. Yeh and D. F. Johnson J. Amer. Chem. Soc.,1978,100,2400. E.W. Ainscough A. W. Addison D. Dolphin and B. R. James J. Amer. Chem. SOC.,1978,100,7585. D. M.Kurtz G. B. Wong and R.H. Holm J. Arner. Chem. SOC.,1978,100,6777. 13' B. A.Averill J. R. Bale and W. H. Orme-Johnson J. Amer. Chem. SOC.,1978,100,3034. 132 J. G. Reynolds E. J. Laskowski and R. H. Holm J. Amer. Chem. Soc. 1978,100,5315. 133 G.B. Wong M. A. Bobrik and R. H. Holm Inorg. Chem. 1978,17,578. 134 R. R. Gay and E. I. Solomon J. Amer. Chem. SOC.,1978,100 1972. 135 Y.Tatsuno Y. Saeki M. Iwaki T. Yagi M. Nozaki T. Kitigawa and S. Otsuka J. Amer. Chem. SOC. 1978,100,4614. 136 R. H. Petty and L. J. Wilson J.C.S. Chem. Comm. 1978,483. 137 C. J. Carrano and K.N. Raymond J. Amer. Chem. SOC.,1978,100,5371. 13* K.S.Murray P. J. Newman and D. Taylor J. Amer. Chem. SOC.,1978,100,2251. 139 F. Bottomley Coord. Chem. Rev. 1978,26 7. R. D. Wilson and J. A. Ibers Inorg. Chem.1978,17,2134. Transition Elements 307 Componad Comments Reference Rutheninm-cont. [Ru3L3O(OzCMe),I+ Preparation properties redox chemistry reaction with 141 (L =dmf py or derivatives) HZ Diketonatecomplexes Convenient preparation. Also for Os Ir 142 Dithiocarbamate complexes Redox chemistry 'H n.m.r. oxidations with BF 143 [(NH3)5Ru(SMe3)13+ First sulphonium ion complex 144 NH3. pyrazine and bipy complexes Short review of electron transport reactions 145 cis-Ru(bipy),Cl Improved synthesis 146 Porphyrin complexes Reversible reactions with 0 in ambient conditions 147 RPF complexes Preparations 'H I9F 31P n.m.r. catalysis 148 (R=F NMeJ [{(NH,)sRu}zLIS' Unpaired electron in (d,, dyz)on Ru'"; e.s.r. n.m.r. 149 (L=pyrazine) magnetochemistry Polynuclear pyrazine complexes Pyrazine bridges up to 6[Ru(NH,) J units; electronic 150 spectra Intervalence transition at high energy and solvent- 151 [{(~~PY)~(PY)R~}~(~.~'-~~PY)I'+ insensitive [Ru2Br9I3-Ru-Ru bond proposed; may be same as earlier repor- 152 ted [Ru,Br,,]'- complexes Nucleoside probably co-ordinates through exocyclic N; 153 [(NH,)5R~]3+-nucleoside redox studies [RU(~~PY)~(PY)OI~' Formed in oxidation of [R~(bipy),(py)(OH,)]~' by Ce4' 154 Osmium OSO Reactions with catechols,'ssa dienes and alkyne~,"'~ 155 relevant to staining plant tissue OsO,(quinuclidine) Trigonal bipyramidal Oswr' but long 0s-N (2.37A) 156 3 bridging MeN(PF,),; Co-Co 2.740A 157 Have P equilateral triangle as ligand 60, 158 First paramagnetic Co nitrosyl 159 First preparation unsolvated 160 Resonance Raman data as basis for studying Zn proteins 161 when Zn replaced by Co S.A. Fouda B. C. Y. Hui and G. L. Rempel Inorg. Chem. 1978,17 3213; J. A.Baumann D. J. Salmon S.T. Wilson T. J. Meyer and W. E. Hatfield ibid.,p. 3342. M. A. M. Queir6s and S. D. Robinson Znorg. Chem. 1978,17 310. S.H.Wheeler B. M. Mattson G. L. Miessler and L. H. Pignolet Inorg. Chem. 1978 17 340. 144 C. A. Stein and H. Taube J. Amer. Chem. SOC.,1978,100,336. T.J. Meyer Accounts Chem. Res. 1978,11,94. R. A. Krause Znorg. Chim. Actu 1978,31.241. N. Farrell D. H. Dolphin and B. R. James J. Amer. Chem. SOC.,1978,100 325. 14* R. A. Head and J. F. Nixon J.C.S. Dalton 1978,885and 5 following papers. B. C. Bunker R.S. Drago D. N. Hendrickson R. M. Richman and S.L. Kessell J. Amer. Chem. SOC. 1978,100,3805. A. von Kameke G. M. Tom and H. Taube Znorg. Chem. 1978,17,1790. '" M. J. Powers and T. J. Meyer Inorg. Chem. 1978 17 1785. '" J. E.Fergusson and A. M. Greenaway Austral. J. Chem. 1978,31,497. M. J. Clarke J. Amer. Chem. SOC.,1978,100 5068. lS4 B. A. Moyer and T. J. Meyer J. Amer. Chem. Soc. 1978,100 3601. (a) A. J. Nielson and W. P. Griffith J.C.S. Dalton 1978,1501;(6)M.Schroder and W. P. Griffith ibid. p. 1599. 156 W. P. Griffith A. C. Skapski K. A. Woode and M. J. Wright Inorg. Chim. Acta 1978,31 L413. '" M. Chang M. G. Newton R. B. King and T. J. Lotz Inorg. Chim. Actu 1978,28 L153. F. Cecconi P.Dapporto S.Midollini and L. Sacconi Znorg. Chem. 1978,17,3292.B. T.Huie P. Brant and R. D. Feltham. Znorg. Chim. Acm 1978,29,L221. S.V.hginov 2.K. Nikitina and V.Ya. Rosolovskii Russ. J. Znorg. Chem. 1978,17 178. 16' S.Salama and T. G. Spiro. J. Amer. Chem. SOC.,1978 100 1105. 14' 308 F. A. Hart P. Thornton and D. A. Rice Compound Comments Reference Cobalt-cont. [WPY i2(saWl+ Controlled potential reduction in py with LiCIO +0 162 [salen = 0.C6H,CN:NC,H,N:CH-traps 0,-as LiO C6H401 Co”-thioiminate tetradentates Energetics of reversible absorption of O2 studied with 163 varying ligand solvent added base Co” Co”’ complexes with dien Redox properties of geometrical isomers 164 Porphyrin complexes In Me,SO found Me-S-CH,-Co unit 165 I 0 [CO(L-as para gin ate)(^-aspartate)] X-ray structure shows amide group of asparaginate 166 H20 co-ordinates as -C=N-Co II OH H [Co(phen)( meso-tartrate)]’ All 4 isomers prepared 167 [Co(NH,),13+-S donor Correlation between Co-N lengthening trans to S and 168 rate of substitution by NCS- ICo(C0,),l3-Reduction by N2H preceded by substitution 169 ~co(NH,)sx12+ Reduction by Cr” V2+ or Ru(NH,),” is outer-sphere 170 (X = amino-acid anion) process but precursor complex formed [c~(en)~(NO~),l’ Catalyst for NO +RNH +N +N,O 171 Rhodium Rh(Bu‘,P),ClH Trigonal bipyramidal Rh short Rh-H (1.36A) high 172 4Rh-H) (2205 2220 cm-I) reduced hydrogenation catalytic power Nickel Nil-phosphine complexes Formed by reduction of Ni” with NaBH in presence of 173 ligand’ Ni”-cyclic triamine complexes Small ring size gives greater Dq and formation constant.174 Also for Cu [Ni(6,6’-dihydrazin0-2,2’-bipyridyl)]’’ Complexes of new tetradentate ligands by reaction with 175 diketones Neutron diffraction shows cis-bridged regular PdF 176 octahedra Resonance Raman spectra gave mixed valence tran- 177 sitions and v(M-X) Platinum Pf2(PR3)4 MO study of reactions and formation from Pt(PR,) 178 Pt(8-oxyquinolinate) Long-lived excited state emission spectrum 179 ‘62 A. Puxeddu N. Marisch and G. Costa J.C.S. Chem. Comm. 1978 339. 163 L. S.Chen M. E. Koehler B. C. Pestel and S. C. Cumrnings J. Amer. Chem. SOC.,1978 100 7243. 164 A. M. Bond F. R. Keene N. W. Rumble G. H. Searle and M. R. Snow Inorg. Chem. 1978,17,2847. ’” P.Boucly J. Devynck M. Perree-Fauver and A.Gauderner J. Organometallic Chem. 1978,149 65. 166 M. Sekizaki Bull. Chem. SOC. Japan 1978 51 1991. A. Tatehata Inorg. Chem. 1978 17 725. 168 R.C. Elder M. J. Heeg M. D. Payne M. Trkula and E. Deutsch Inorg. Chem. 1978,17,431. 169 S. P. Tanner Inorg. Chem. 1978,17,600. C. S. Glennon J. D. Edwards and A. G. Sykes Inorg. Chem. 1978 17 1654. 17’ S. Naito J.C.S. Chem. Comm. 1978 175. 172 T.Yoshida S. Otsuka M. Matsumoto and K. Nakatsu Inorg. Chim. Acta 1978 29 L257. 173 D. G. Holah A. N. Hughes B. C. Hui and C.-T. Kan Canad. J. Chem. 1978 56,2552. 174 L. J. Zornpa Inorg. Chem. 1978,17,2531. 175 J. Lewis and K. P. Wainwright J.C.S. Dalton 1978,440. 176 A. F. Wright B. E. F. Fender N. Bartlett and K. Leary Inorg. Chem. 1978,17,748.177 R.J. H. Clark and P. C. Turtle J.C.S. Dalton 1978 1622. 17’ A. Dedieu and R. Hoffmann J. Amer. Chem. SOC.,1978,100,2074. 179 R.Ballardini M. T. Indelli G. Varani C. A. Bignozzi and F. Scandola Znorg. Chim. Actu 1978,31 L423. Transition Elements 309 Compound Comments Reference Platinum-cont. Pt4(OzCMe)s Pt square all 0,CMe bridging 2 crystal forms 180 Pt"-lW-methionineS-oxide} comdex Dimeric bridging RNH groups 181 [(Ph;P);Pt(OH)(0,)F't(PPh3jz]+ -First O,'-/OH- bridge system 182 [Pt(CN)4]"-(1c n s2) Extended Hiickel calculations gave band structure 183 Ptn-2,2'-bipyrimidine complexes Layers in columnar structures brought closer in hydrates 184 by H-bonding Propose Pt'" in columnar structure 185 Unusually high ox. state in phosphine complex 186 Copper Na,[Cu(CN),.3H20 First discrete [CU(CN),]~- planar 187 Planar Cu,; L has 3 modes of co-ordination 188 Cu' cluster complexes MO studies conclude no Cu-Cu bonds 189 Cu180z(OSiMe3)14 Spherical molecule 18 Cu in centre with OSiMe groups 190 on surface H,C=C(Me)CNCuBr Two types of 4-co-ordinate Cu 191 cu'om XPS spectrum shows 1Cu'+ 2Cu2' improved prep- 192 Cu,(HzO)z(SO&z, 'Chevreul's salt' aration 'N=C Rate of ligand exchange with en increases as structure 193 becomes non-planar II RH (R= H,Me,Pr" Pr' But) CuInCI Resonance Raman spectrum suggests CICu(p-CI),InCI 194 cc~,L2(co3)12+ Has Cu-0-CU bridging unit 195 (L = tridentate macrocycle) Cu(OC,H,NPr,)(NCO) Structures of dimer (antiferromagnetic) and tetramer 196 (magnetically normal) M.A. A. F. de C. T. Carrondo and A. C. Skapski Acta Cryst. 1978 B34,1857,3576. W. A. Freeman L. J. Nicholls and C. F. Liu Inorg. Chem. 1978,17,2989. 182 S. Bhaduri P. R. Raithby C. I. Zuccaro M. B. Hursthouse L. Casella and R. Ugo. J.C.S. Chem. Comm. 1978,991. 183 M.-H. Whangbo and R. Hoffmann J. Amer. Chem. SOC.,1978,100,6093. P. M. Kiernan and A. Ludi J.C.S. Dalton 1978 1127. H. Endres H. J. Keller H. van de Sand and V.Dong 2.Naturforsch. 1978,33b 843. lS6 C. Crocker P. L. Goggin and R. J. Goodfellow J.C.S. Chem. Comm. 1978 1056. 18' C. Kappenstein and R.P. Hugel Inorg. Chem.. 1978 17 1945. D. M. L. Goodgame G. A. Leach A. C. Skapski and K. A. Woode Inorg. Chim Acta 1978,31 L375. lS9 A. Avdeef and J. P. Fackler Znorg.Chem. 1978 17 2182; P. K. Mehrotra and R. Hoffmann ibid. p. 2187. 190 T. Greiser 0.Jarchow K.-H. Klaska and E. Weiss Chem. Ber. 1978,111,3360. 19' M. Massaux G. Ducreux R. Chevalier and M.-T. Le Bihan Actu Cryst. 1978 B34 1863. 192 P. Brant and Q. Fernando J. Inorg. Nuclear. Chem. 1978,40,235. 193 G. R. Dukes and S.R. Loveday J.C.S. Chem. Comm. 1978,583. C. W. Schlapfer and C. Rohrbasser Znorg. Chem. 1978,17 1623. A. R. Davis F.W. B. Einstein N. F. Curtis and J. W. L. Martin J. Amer. Chem. SOC.,1978,100,6258. 196 L. Merz and W. Haase Acta Cryst. 1978 B34 2128. 19' 19' F. A. Hart P. Thornton and D. A. Rice Compound Comments Reference Copper-cont. N-N-N \ Has Cu/ Cu bridging unit and \ / N-N-N large zero field splitting [CuZ(tren),Ll4+ First aromatic diamines to transmit magnetic exchange 198 Cu( S'CNEt) Resonance Raman spectrum finds 14cu-S) at energy 199 for blue Cu proteins Laccase Magnetochemistry revised type I I1 sites normal type 200 I11 strongly coupled Oxytyrosinase Resonance Raman spectrum suggests (Cu-imidazole) 201 and 0,'-present; type I11 protein Cu" bovine carbonic anhydrase 'H n.m.r.in H,O suggests 5-co-ordinate Cu with one site 202 more distant [Cu(glycylglycylhistaminate)]~2Hz0 From Cu(OH) + glyglyhis first product of oxidative 203 decarboxylation to remain co-ordinated; X-ray struc- ture X-ray structure 204 Polynuclear structures 205 Unusual cluster structure. Also for Cu 206 Found in zeolite Ag bonded to 6Ag' 207 Preparation and redox chemistry in NH3(I) 208 Redetermined Ee for Au +Au' + e-209 X-ray structure rather long Au-Au (3.104A) 210 Preparation and X-ray structure.WS4'-bidentate 211 bridging 19' 19* T. R. Felthouse and D. N. Hendrickson Inorg. Chem. 1978 17,444. T. R.Felthouse E. N. Duesler and D. N. Hendrickson J. Amer. Chem. SOC.,1978,100,618. 199 L.Tosi and A. Gamier J.C.S. Dalton 1978 53. 'O0 D. M.Dooley R. A. Scott J. Ellinghaus E. I. Solomon and H. B. Gray Proc. Nut. Acad. Sci. U.S.A. 1978,75,3019. N. C. Eickmann E. I. Solomon J. A. Larrabee T. G. Spiro and K. Lerch J. Amer. Chem. SOC.,1978 100,6529. I. Bertini G.Canti C. Luchinat and A. Scozzafava J.C.S. Dalton 1978 1269. '03 P. de Meester and D. J. Hodgson Znorg. Chem. 1978,17,440.P. Meyer A. Rimsky and R. Chevalier Acta Cryst. 1978 B34 1457. ,05 (a) A. A. M. Aly D. Neugebauer 0. Orama U. Schubert and H. Schmidbauer Angew. Chem. Internat. Edn. 1978 17 125; (b)H.Schmidbauer A. A. M. Aly and U. Schubert ibid. p. 846. '06 I. G. Dance Austral. J. Chem. 1978,31 2195. ,07 Y.Kim and K. Seff J. Amer. Chem. SOC.,1978,100 175. ''13 W. J. Peer and J. J. Lagowski J. Amer. Chem. SOC.,1978 100 6260; T. H.Teherani W. J. Peer J. J. Lagowski and A. J. Bard ibid.,p. 7768. '09 P. R. Johnson J. M. Pratt and R. I. Tilley J.C.S. Chem. Comm. 1978 606. W. S. Crane and H. Beall Inorg. Chim. Actu 1978,31 L469. 211 A. Miiller H. Dornfeld G. Henkel B. Krebs and M.P. A. Viegers Angew. Chem. Internat. Edn. 1978 17,52.

 

点击下载:  PDF (1423KB)



返 回