首页   按字顺浏览 期刊浏览 卷期浏览 Diffusion Theory of the Electrodeless Ring Discharge
Diffusion Theory of the Electrodeless Ring Discharge

 

作者: Hans U. Eckert,  

 

期刊: Journal of Applied Physics  (AIP Available online 1962)
卷期: Volume 33, issue 9  

页码: 2780-2788

 

ISSN:0021-8979

 

年代: 1962

 

DOI:10.1063/1.1702549

 

出版商: AIP

 

数据来源: AIP

 

摘要:

The Schottky theory of the positive column is applied to the inductive type of a high frequency discharge for cases where the electron collision frequency &ngr;cis large compared to the field frequency &ohgr;. Simultaneous solutions of the equations for the induced field and for the electron balance are obtained under the following assumptions: (1) Mobilities of electrons and ions in the discharge volume are constant; (2) the distributions of ionization rate and diffusion coefficient across the discharge tube are determined by the absolute value of the induced electric field at the inner tube radius |ER| and by its gradient at the same position; (3) the distribution ofEcan be obtained on the basis of an equivalent uniform conductivity &sgr;¯ which yields the same impedance for the discharge as the actual &sgr; distribution. The characteristic equation relating |ER| to tube radiusRcontains (compared to the positive column) an extra term which takes into account the nonuniformity of |E|. This term is expressed as a function of the parameter &rgr;R≡2R/&dgr;, where &dgr; is the skin depth. Solving forRwith assumed values of |ER| and &rgr;Rthus yields &dgr; and by the known value of &ohgr; also &sgr;¯. From the impedance relationship one then determines the value of the magnetic fieldHRthat must be applied to produce particular values of &sgr;¯ and |ER| with given &ohgr; andR. The distribution of electron densitynis obtained in relation to the undetermined value at the tube axisn0. On the basis of constant electron mobility a relationship between &sgr;¯ andn0is obtained from the impedance equivalence which allows one to calculate absolute distributions of &sgr; andn. These distributions are compatible with the |E| distribution for cases where &rgr;R≤1.4. The method is illustrated by examples for hydrogen, where empirical data for &ngr;c, electron energy, ionization, and diffusion rates are used. The results are generalized in the way common for glow discharges by introduction of gas pressurepas similarity parameter. They indicate that the maximum obtainable electron density depends primarily upon the product &ohgr;HR, only moderately uponpand not uponR.

 

点击下载:  PDF (688KB)



返 回