首页   按字顺浏览 期刊浏览 卷期浏览 Initial steps of interface formation: Surface states and thermodynamics
Initial steps of interface formation: Surface states and thermodynamics

 

作者: W. Göpel,  

 

期刊: Journal of Vacuum Science and Technology  (AIP Available online 1979)
卷期: Volume 16, issue 5  

页码: 1229-1235

 

ISSN:0022-5355

 

年代: 1979

 

DOI:10.1116/1.570197

 

出版商: American Vacuum Society

 

关键词: INTERFACES;SYNTHESIS;SURFACES;ELECTRONIC STRUCTURE;THERMODYNAMICS;ADSORPTION ISOTHERMS;CHEMISORPTION;SCHOTTKY BARRIER DIODES;ELECTRON SPIN RESONANCE;AUGER ELECTRON SPECTROSCOPY;ELECTRON DIFFRACTION;ZINC OXIDES;FERMI LEVEL

 

数据来源: AIP

 

摘要:

A general framework about the influence of reactive particles on surface electronic structure and barrier formation at low coverages (ϑ?10−2) is deduced from experimental results obtained under thermodynamic equilibrium conditions on a suitable compound semiconductor ’’model surface.’’ Adsorption isotherms enable a rough classification of weak and strong electronic interactions into physisorption, chemisorption, and surface reaction steps, which depend on temperatures and partial pressures. (1) Covalent bonding of particles on ionic compound semiconductor surfaces, characterized by small partial charges formally attributed to the adsorption complex, may lead to extremely large dipole effects even at very low coverages [e.g.,dipole moments ≳ 15 Debye may formally be attributed to the adsorption complex ZnO (101̄0)/CO2,chemat ϑ<10−2]. Correspondingly, drastic changes are found in surface atom relaxation. Sticking coefficients are close to unity. (2) Ionic bonding, characterized by pronounced band bending, Sticking coefficients are extremely low for ’’acceptor type’’ adsorption.(3) Point defects at compound semiconductor surfaces are, for entropy reasons, thermodynamically stable at high temperatures. We present for the first time quantitative results on equilibrium concentrations of surface point defects [oxygen vacancies at ZnO(101̄0)], which cause surface Fermi level pinning at extremely low coverages (ϑ<10−3).

 

点击下载:  PDF (1679KB)



返 回