首页   按字顺浏览 期刊浏览 卷期浏览 Pharmacokinetic Drug Interactions of Macrolides
Pharmacokinetic Drug Interactions of Macrolides

 

作者: Piero Periti,   Teresita Mazzei,   Enrico Mini,   Andrea Novelli,  

 

期刊: Clinical Pharmacokinetics  (ADIS Available online 1992)
卷期: Volume 23, issue 2  

页码: 106-131

 

ISSN:0312-5963

 

年代: 1992

 

出版商: ADIS

 

数据来源: ADIS

 

摘要:

The macrolide antibiotics include natural members, prodrugs and semisynthetic derivatives. These drugs are indicated in a variety of infections and are often combined with other drug therapies, thus creating the potential for pharmacokinetic interactions.Macrolides can both inhibit drug metabolism in the liver by complex formation and inactivation of microsomal drug oxidising enzymes and also interfere with microorganisms of the enteric flora through their antibiotic effects. Over the past 20 years, a number of reports have incriminated macrolides as a potential source of clinically severe drug interactions. However, differences have been found between the various macrolides in this regard and not all macrolides are responsible for drug interactions. With the recent advent of many semisynthetic macrolide antibiotics it is now evident that they may be classified into 3 different groups in causing drug interactions. The first group (e.g. troleandomycin, erythromycins) are those prone to forming nitrosoalkanes and the consequent formation of inactive cytochrome P450-metabolite complexes. The second group (e.g. josamycin, flurithromycin, roxithromycin, clarithromycin, miocamycin and midecamycin) form complexes to a lesser extent and rarely produce drug interactions. The last group (e.g. spiramycin, rokitamycin, dirithromycin and azithromycin) do not inactivate cytochrome P450 and are unable to modify the pharmacokinetics of other compounds.It appears that 2 structural factors are important for a macrolide antibiotic to lead to the induction of cytochrome P450 and the formationin vivoorin vitroof an inhibitory cytochrome P450-iron-nitrosoalkane metabolite complex: the presence in the macrolide molecules of a nonhindered readily accessibleN-dimethylamino group and the hydrophobic character of the drug.Troleandomycin ranks first as a potent inhibitor of microsomal liver enzymes, causing a significant decrease of the metabolism of methylprednisolone, theophylline, carbamazepine, phenazone (antipyrine) and triazolam. Troleandomycin can cause ergotism in patients receiving ergot alkaloids and cholestatic jaundice in those taking oral contraceptives.Erythromycin and its different prodrugs appear to be less potent inhibitors of drug metabolism. Case reports and controlled studies have, however, shown that erythromycins may interact with theophylline, carbamazepine, methylprednisolone, warfarin, cyclosporin, triazolam, midazolam, alfentanil, disopyramide and bromocriptine, decreasing drug clearance. The bioavailability of digoxin appears also to be increased by erythromycin in patients excreting high amounts of reduced digoxin metabolites, probably due to destruction of enteric flora responsible for the formation of these compounds. These incriminated macrolide antibiotics should not be administered concomitantly with other drugs known to be affected metabolically by them, or at the very least, combined administration should be carried out only with careful patient monitoring.Josamycin, midecamycin and probably also the related compounds miocamycin, clarithromycin and flurithromycin, may have a clinically significant interaction with carbamazepine and cyclosporin, requiring close monitoring. Roxithromycin interaction with drugs such as theophylline or cyclosporin does not seem to justify a dosage reduction. No pharmacokinetic interactions have yet been described for spiramycin, rokitamycin, dirithromycin and azithromycin.

 

点击下载:  PDF (14132KB)



返 回