首页   按字顺浏览 期刊浏览 卷期浏览 Modelling of the kinetics and parametric behaviour of a copper vapour laser: Output pow...
Modelling of the kinetics and parametric behaviour of a copper vapour laser: Output power limitation issues

 

作者: R. J. Carman,  

 

期刊: Journal of Applied Physics  (AIP Available online 1997)
卷期: Volume 82, issue 1  

页码: 71-83

 

ISSN:0021-8979

 

年代: 1997

 

DOI:10.1063/1.365851

 

出版商: AIP

 

数据来源: AIP

 

摘要:

A self-consistent computer model was used to simulate the plasma kinetics (radially resolved) and parametric behaviour of an 18 mm bore (6 W) copper vapour laser for a wide range of optimum and non-optimum operating conditions. Good quantitative agreement was obtained between modelled results and experimental data including the temporal evolution of the4p2P3/2,4s22D5/2and4s22D3/2Cu laser level populations derived from hook method measurements. The modelled results show that the two most important parameters that affect laser behaviour are the ground state copper density and the peak electron temperature Te.For a given pulse repetition frequency (prf), maximum laser power is achieved by matching the copper atom density to the input pulse energy thereby maintaining the peak Teat around 3 eV. However, there is a threshold wall temperature (and copper density) above which the plasma tube becomes thermally unstable. At low prf(<8 kHz), this thermal instability limits the attainable copper density (and consequently the laser output power) to values below the optimum for matching to the input pulse energy. For higher prf values(>8 kHz), the copper density can be matched to the input pulse energy to give maximum laser power because the corresponding wall temperature then falls below the threshold temperature for thermal instability. For prf>14 kHz, the laser output becomes highly annular across the tube diameter due to a severe depletion of the copper atom density on axis caused by radial ion pumping. ©1997 American Institute of Physics.

 

点击下载:  PDF (280KB)



返 回