|
|
| 11. |
Department of Scientific and Industrial Research |
| |
Analyst,
Volume 63,
Issue 747,
1938,
Page 430-433
Preview
|
PDF (492KB)
|
|
摘要:
430 DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH : Department of Scientific and Industrial Research WATER POLLUTION RESEARCH BOARD REPORT FOR THE YEAR ENDED JUNE 30 1937* THIS the Tenth Annual Report of the Board includes the Report of the Director of Water Pollution Research (Dr. H. T. Calvert). Close touch is maintained with the work of the Joint Advisory Committee on River Pollution which was set up in 1927 by the Ministers of Health and of Agriculture and Fisheries. In its second report? the Committee recommended that subject to certain conditions, local sanitary authorities should be under a general obligation to receive and dispose of the industrial effluents of their districts and that the traders should have a correlative right to discharge such effluents into the public sewers.Effect has now been given to this recommendation by the passing of the Public Health (Drainage of Trade Premises) Act 1937 which comes into operation on July lst, 1938. WATER-SOFTENING MATERIALS.-EXperimentS have been continued on the preparation of materials for softening water by the base-exchange process. This process is used in household water-softeners and is also employed on a large scale at a number of waterworks. The investigations of the Board have shown that satisfactory water-softening materials can be prepared from fuller’s earth which * H.M. Stationery Office Adastral House Kingsway London W.C.2. t H.M. Stationery Office (1930). May 1938. Price 9d. net. Price 6d. net WATER POLLUTION RESEARCH BOARD 431 is found in parts of the British Isles.The base-exchange capacity of the final product depends on the type of fuller's earth used yellow weathered varieties being more satisfactory than blue varieties. In the method of treatment fuller's earth is mixed with dilute hydrochloric acid then dried baked at about 600" C, and treated with solutions of sodium silicate and sodium aluminate. BASE-EXCHANGE AND ACID-EXCHANGE PROPERTIES OF SYNTHETIC RESINS.-Recent experiments have shown that the exchange values of the resins not only vary with the phenol tannin or aromatic base from which they are derived but are dependent also on the detailed conditions of preparation. For example, the base-exchange value of resin made from sulphited quebracho tannin is largely dependent on the proportion of sodium bisulphite allowed to react with the tannin before it is converted into a resin by addition of formaldehyde.Within limits, the larger the proportion of sulphite the greater the base-exchange value of the final resin. It has been found however that the quebracho tannin resins with the highest base-exchange values are to some extent soluble in water. Quebracho tannin resins with lower base-exchange values appear to be insoluble in water and in dilute solutions of acids and alkalis. In view of the possible use of the resins for the treatment of drinking water experiments are in progress with the object of determining the possibility of the water being contaminated by substances derived from the resins. These experiments involve the determination of minute quantities of organic matter.The possibility of utilising the resins for the removal of boron and fluorine from natural waters is also under investigation. CONTAMINATION OF WATER BY LEAD.--Further series of experiments have been carried out at the Chemical Research Laboratory on the conditions affecting the action of water on lead service pipes. The method devised for determining the average concentration of lead in drinking water withdrawn from household services over periods of several weeks has been tested in several towns in England and Scotland. Average concentrations of lead ranging from less than 0.1 to as much as 0.5 part per million have been obtained. By the method as first devised the water was passed through a meter and then through a filter containing a base-exchange zeolite to absorb the whole of the lead.Analysis of the zeolite for lead, however was difficult and tedious. Later the filters were filled with powdered magnesia in which the lead could readily be determined but the filters soon offered considerable resistance to the flow of water particularly with hard water. This difficulty has been overcome by using a mixture of calcium carbonate and magnesia as the filtering medium; the proportions of calcium carbonate and magnesia in the mixture are varied according to the character of the water under examination. MILK FACTORY EFFLUENTS.--wOrk on the purification of waste waters from dairies and milk products factories which is being carried out in collaboration with the milk industry has been continued. During the past year the industry, through the Milk Marketing Boards has contributed a further L3250 towards the cost of the investigation.One of the most important results of the work has been to show that the loss of valuable products and by-products carried away with the waste waters from dairies and milk products factories can be considerably reduced by inexpensive modifications in the manufacturing processes. For example when churns of milk are brought from farms to a central milk depot, they are inverted and emptied into a large receiving tank. If sufficient time is not given to allow the churns to drain an appreciable quantity of milk remains in the churns and is later washed out and discharged with the waste waters. By a short increase in the time of drainage of the churns the average quantity of milk carried away with the waste waters can be reduced from more than 0.5 per cent.to less than 0-25 per cent. of the milk handled. For a depot receiving 10,000 gallons of milk daily this represents a saving of over 9000 gallons of saleable milk annually. Besides the saving of valuable material the polluting nature and thus the cost of treatment of the waste waters is greatly reduced. In many instances the repor 432 DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH : states the value of the milk saved in two or three years is equal to the capital cost of the plant required for the treatment of waste waters. The work of the Board has shown that the unavoidable waste waters from dairies can be purified by processes similar to those used for the treatment of sewage.The most suitable method has been found to be biological oxidation in percolating filters operated under certain conditions. Several large-scale plants using this process have now been erected at various dairies. During the past year it has been shown that waste waters containing whey from cheese factories can be purified by methods similar to those which have been found suitable for waste waters from dairies and milk depots. PURIFICATION OF SEWAGE.--The factors affecting the coagulation or floccula-tion of the organic matter and its adsorption by the sludge are under investigation under the supervision of Professor F. G. Donnan in the Department of Chemistry of University College London and the biology of the process is being studied in the Department of Biochemistry of the College under the supervision of Professor J.C. Drummond. During the past year a further series of experiments was made in which bubbles of gas were passed for several hours through sewage liquor from which suspended particles had been removed by centrifuging. In the new experiments bubbles of air oxygen hydrogen and nitrogen to which about 1 per cent. by volume of carbon dioxide was added to prevent precipitation of calcium carbonate were passed through the liquid. The presence of carbon dioxide did not affect the quantity of organic matter coagulated by air and oxygen but it caused some reduc-tion in the quantity coagulated by hydrogen and nitrogen; this difference may be due to some biochemical change.Experiments have been continued on the effect of passing bubbles of gas through sewage liquor to which different proportions of activated sewage sludge had been added. The presence of activated sludge caused a great increase in the quantity of organic matter removed from the sewage liquor, though the increase was not so great in the experiments with bubbles of hydrogen and nitrogen as with bubbles of air and oxygen. One phase of the investigation has included a large number of experiments on the effect of additions of sewage and of proteins on the coagulation of suspensions of quartz and clays by means of electrolytes. The experiments carried out in the Department of Biochemistry during the past year have been directed primarily towards obtaining information on the changes in the nitrogenous compounds of sewage and sewage sludge during the stage of biological oxidation in the activated sludge process.These changes appear to be the result of a series of concurrent reactions brought about mainly through the enzymic activity of bacterial cells. Organisms capable of liberating gaseous nitrogen from sewage have been isolated. ESTUARY OF THE RIVER MERSEY EFFECT OF THE DISCHARGE OF SEWAGE ON THE CONSERVANCY OF THE RIVER* IN this report a detailed description is given of the results of a chemical hydro-graphical and biological investigation of the effects of the discharge of crude sewage on the amount and nature of the deposits in the estuary of the river Mersey. For many years the possible effects on the conservancy of the estuary of the direct discharge of sewage from a population of nearly one and a half million people has given rise to much controversy among the local interests concerned.To facilitate the passage of ocean-going ships the sea channels in Liverpool Bay have been deepened considerably by dredging which has been carried out continuously * “Water Pollution Research,” Technical Paper No. 7. H.M. Stationery Office Adastral House Kingsway London W.C.2. Price 30s ESTUARY OF THE RIVER MERSEY 433 since 1890. It had been suggested that the nature of the material deposited in these channels was so altered by the presence of sewage in the water as to increase the difficulty of dredging. Above the Narrows on which are situated the extensive systems of docks of Liverpool and Birkenhead is a tidal pool.The upper part of this tidal pool is navigable only at high water and contains large areas of banks of mud and sand. The maintenance of the tidal capacity of this pool is considered to be of great importance since the water which flows into it on the flood tide and out on the ebb passes through the sea channels in Liverpool Bay and helps to main-tain their depth by its scouring action. The capacity of the upper estuary is such that at high water of a spring tide the volume of water is about 1000 million cubic yards. During the period 1906 to 1931 the capacity decreased by approximately 52 million cubic yards and it was suggested that this was due to the presence of sewage which had caused the deposition of mud of so glutinous a nature that it was not again eroded by the tidal streams.In 1932 the local sanitary authorities and the authorities and companies interested in the navigation of the estuary invited the Department of Scientific and Industrial Research to undertake an investigation into the effect of the sewage on the amount and hardness of the deposit in the estuary and agreed to pay the whole cost of the work. Accordingly in 1933 a laboratory was set up in Liverpool and two boats specially designed and equipped were built for the purposes of the investigation. The investigation occupied four years and was made a t a cost of about E26,OOO. The investigation was not concerned directly with such problems as the effect of sewage on the sanitary condition of the river and foreshores nor on fisheries but was directed solely to the study of the effect of sewage on the conservancy of the estuary.Samples of mud and other solid matter for examination were collected from different parts of the upper estuary of the Mersey and from Liverpool Bay. The concentration of organic matter in mud from the Mersey was found to be approxi-mately the same as that in similar samples of mud from the bed of the Irish Sea, from Liverpool Bay and from the relatively unpolluted estuaries examined. Sewage in the concentration in which it is present in the Mersey has no appreciable effect on the composition of the intertidal deposits. Mud carried in suspension in the estuary water is in the form of comparatively large flocks and in this condition its rate of sedimentation is not affected by sewage in the concentrations present. Detailed examination and analysis of the records of the Mersey Docks and Harbour Board showed that there is no evidence of an increase during recent years in the difficulty of dredging in Liverpool Bay. The capacity of the upper estuary in 1936 was about 12 million cubic yards greater than in 1931; the capacity in 1936 was about the same as in 1871 although considerable fluctuations in capacity had occurred during this period. A reduction in capacity during the period 1906 (when the capacity was unusually high) to 1931 was due mainly to the deposition of sand in the deeper parts of the estuary and not to the deposition of mud. In direct answer to the terms of reference the report states “ the crude sewage discharged into the estuary of the river Mersey has no appreciable effect on the amount and hardness of the deposits in the estuary.
ISSN:0003-2654
DOI:10.1039/AN9386300430
出版商:RSC
年代:1938
数据来源: RSC
|
| 12. |
Milk and Nutrition |
| |
Analyst,
Volume 63,
Issue 747,
1938,
Page 434-436
Preview
|
PDF (347KB)
|
|
摘要:
426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents.It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate.There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international.The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively.Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies. Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited.The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation.Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE.By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time.The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction
ISSN:0003-2654
DOI:10.1039/AN9386300434
出版商:RSC
年代:1938
数据来源: RSC
|
| 13. |
International Union of Chemistry. Eighth Report of the Commission on Atomic Weights of the International Union of Chemistry |
| |
Analyst,
Volume 63,
Issue 747,
1938,
Page 436-437
Preview
|
PDF (160KB)
|
|
摘要:
426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents.It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate.There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international.The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively.Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies. Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited.The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction
ISSN:0003-2654
DOI:10.1039/AN9386300436
出版商:RSC
年代:1938
数据来源: RSC
|
| 14. |
British Standards Institution |
| |
Analyst,
Volume 63,
Issue 747,
1938,
Page 437-437
Preview
|
PDF (41KB)
|
|
摘要:
426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents.It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction
ISSN:0003-2654
DOI:10.1039/AN9386300437
出版商:RSC
年代:1938
数据来源: RSC
|
| 15. |
Food and drugs |
| |
Analyst,
Volume 63,
Issue 747,
1938,
Page 438-443
Preview
|
PDF (733KB)
|
|
摘要:
426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents.It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate.There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international.The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively.Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies. Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited.The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation.Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE.By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time.The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice.Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years.The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion.The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies. Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on.Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation.Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp.15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international.The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited.The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice.Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C.Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner.He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction
ISSN:0003-2654
DOI:10.1039/AN9386300438
出版商:RSC
年代:1938
数据来源: RSC
|
| 16. |
Biochemical |
| |
Analyst,
Volume 63,
Issue 747,
1938,
Page 443-447
Preview
|
PDF (479KB)
|
|
摘要:
426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents.It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate.There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international.The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively.Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies. Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited.The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation.Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE.By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time.The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice.Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years.The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion.The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies. Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on.Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation.Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp.15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international.The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction
ISSN:0003-2654
DOI:10.1039/AN9386300443
出版商:RSC
年代:1938
数据来源: RSC
|
| 17. |
Organic |
| |
Analyst,
Volume 63,
Issue 747,
1938,
Page 447-450
Preview
|
PDF (457KB)
|
|
摘要:
426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents.It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate.There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international.The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively.Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies. Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited.The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation.Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE.By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time.The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice.Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years.The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion.The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies. Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on.Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction
ISSN:0003-2654
DOI:10.1039/AN9386300447
出版商:RSC
年代:1938
数据来源: RSC
|
| 18. |
Inorganic |
| |
Analyst,
Volume 63,
Issue 747,
1938,
Page 451-453
Preview
|
PDF (298KB)
|
|
摘要:
426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents.It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate.There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international.The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively.Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies. Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited.The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation.Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE.By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time.The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction
ISSN:0003-2654
DOI:10.1039/AN9386300451
出版商:RSC
年代:1938
数据来源: RSC
|
| 19. |
Microchemical |
| |
Analyst,
Volume 63,
Issue 747,
1938,
Page 453-456
Preview
|
PDF (415KB)
|
|
摘要:
426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents.It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate.There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international.The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively.Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies. Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited.The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation.Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE.By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time.The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice.Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years.The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion.The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies. Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on.Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction
ISSN:0003-2654
DOI:10.1039/AN9386300453
出版商:RSC
年代:1938
数据来源: RSC
|
| 20. |
Physical methods, apparatus, etc. |
| |
Analyst,
Volume 63,
Issue 747,
1938,
Page 456-457
Preview
|
PDF (213KB)
|
|
摘要:
426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents.It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate.There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international.The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively.Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies. Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited.The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction
ISSN:0003-2654
DOI:10.1039/AN9386300456
出版商:RSC
年代:1938
数据来源: RSC
|
|