|
|
| 1. |
Proceedings of the Society of Public Analysts and other Analytical Chemists |
| |
Analyst,
Volume 63,
Issue 745,
1938,
Page 229-229
Preview
|
PDF (95KB)
|
|
摘要:
426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents.It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction
ISSN:0003-2654
DOI:10.1039/AN9386300229
出版商:RSC
年代:1938
数据来源: RSC
|
| 2. |
Anniversary dinner |
| |
Analyst,
Volume 63,
Issue 745,
1938,
Page 230-233
Preview
|
PDF (467KB)
|
|
摘要:
426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents.It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate.There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international.The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively.Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies. Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited.The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation.Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE.By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time.The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice.Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years.The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion.The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies. Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on.Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction
ISSN:0003-2654
DOI:10.1039/AN9386300230
出版商:RSC
年代:1938
数据来源: RSC
|
| 3. |
Annual Report of Council. March, 1938 |
| |
Analyst,
Volume 63,
Issue 745,
1938,
Page 233-237
Preview
|
PDF (516KB)
|
|
摘要:
426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents.It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate.There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international.The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively.Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies. Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited.The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation.Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE.By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time.The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice.Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years.The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion.The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies. Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on.Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation.Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp.15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international.The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction
ISSN:0003-2654
DOI:10.1039/AN9386300233
出版商:RSC
年代:1938
数据来源: RSC
|
| 4. |
Address of the Retiring President |
| |
Analyst,
Volume 63,
Issue 745,
1938,
Page 237-250
G. Roche Lynch,
Preview
|
PDF (1617KB)
|
|
摘要:
ADDRESS OF THE RETIRING PRESIDENT 237 Address of the Retiring President (G. ROCHE LYNCH O.B.E. M.B. B.S. D.P.H. F.I.C.) LADIES AND GENTLEMEK, It is my first and very pleasant duty to record that this year at the end of my term of office the affairs of the Society are in a flourishing condition, and the Roll of the Society stands at over 830 for the first time in its history. As my predecessor has recorded the Council have decreed that its President shall deliver only one address which shall be given at the end of his term of office. Such a proceeding enabled the Council to invite Professor Barger to address us in March 1937 and as his address has been printed I make no comment save that the principle of inviting distinguished visitors to address us on subjects which are of interest to analysts should prove of the greatest value to the members of the Society.Professor Barger set a standard which if maintained in the future, will make these lectures an important feature of our Society. In modern times, analytical chemistry and the sciences allied to it have become so vast that I often find my knowledge of those subjects with which I have no immediate connection soon grows rusty and I do feel that lectures which from time to time survey any branch of our interests lectures which as it were report progress are of immense service. In considering the affairs of the Society I cannot but express admiration of all the officers and committees who toil so generously in its interests; this voluntary service coupled with a careful handling of the finances has enabled the Society to continue its useful career without any rise in subscription which at it 238 ADDRESS OF THE RETIRING PRESIDENT present rate is a remarkable achievement.In fact as you know a few years ago it was actually able to increase its benefits to members of over 40 years’ standing. The present position of THE ANALYST and its finances is highly gratifying, and reflects the greatest credit on Dr. Mitchell under whose editorship the reputation of the journal has grown to such an extent that the sales to non-members now greatly exceed in number the membership of the Society itself. The figures are a testimony to Dr. Mitchell’s brilliant achievement and at the same time a warning that the very high standard of quality that has been set in the past must be maintained if we are to continue our success.Our two healthy children the North of England and Scottish Sections still progress as will be seen from their Reports and we welcome Professor Hilditch and Dr. Tocher as Chairmen of the Sections whilst Mr. Stubbs and Mr. McKean still give valuable service in a secretarial capacity. During the last two years it is sad to have to report thirteen deaths and among these with the deepest regret that two Past-Presidents are no longer with us-Ellis Richards and Voelcker. The former had not been amongst us for some time owing to ill-health but the latter was an active member until within a few weeks of his death. You will all have read obituary notices in THE AKALYST, and I will only say that their deaths have deprived the Society of wisdom which will be greatly missed.Dr. Voelcker’s affection for our Society is shown in his legacy to us of j6100 and the Council with the cordial consent of his widow has decided to spend part of this sum upon the Presidential badge which I am now wearing. It is to be suitably inscribed to this effect so that his name will be remembered by future Presidents. During the past year changes have taken place in our secretariat. Miss Elliott has reluctantly been compelled to give up her work for the Society and Dr. Mitchell, too has taken the opportunity to limit his work to the Editorship of THE ANALYST. We have been very fortunate in securing the services of Mr. Lane who in addition to his assistant editorship has now undertaken the general work of Secretary.The present and past members of the Council of the Society felt that they could not let Miss Elliott’s resignation pass without expressing their appreciation of her services and they accordingly presented her with a wrist watch as a token of their esteem. For the first time a book has been published under the auspices of the Society -Dr. Schoeller’s work on tantalum and niobium-and it is to be hoped that this will be the forerunner of a series. His researches in this field over a period of 17 years have now been collected together and we are proud to think that this important contribution to analytical chemistry has throughout been associated with us. I could allude to many other matters connected with the activities of the Society during my term of office but time forbids limiting me to but one or two.I would mention the proposed new Food and Drugs Bill which the Minister of Health is to introduce into Parliament. Although this is a subject on which I am no authority it would appear to me from conversations I have had with Public Analysts and with chemists in industry that whilst it contains some matters of controversy it is a valuable piece of legislation and one which will This presentation at her request was made privately ADDRESS OF THE RETIRING PRESIDENT 239 commend itself to all those who desire to see that only pure and wholesome foods reach the public. There is one other matter I am anxious to submit to the younger members of the Society. We welcome papers both for THE ANALYST and for reading before the Society prior to their publication and we encourage papers from the younger men particularly those who are making their first effort.May I, t o the younger men offer these words of advice? First the writing of a paper I would remind you is not the easiest job in the world. When you are familiar with a particular subject you are apt to leave out details you assume are known by all; therefore give too many details rather than too few. Choice of words, setting out of your material and style are all matters of great moment. But, above all show the paper to some experienced person who will be able to guide your hand and advise you so that your paper will at once appeal. A well-read paper will often impress in such a way that you are at once accepted as having a competent knowledge of your subject and may help you in your career.A badly-read paper may do you much harm. I appreciate that the man who is accustomed to lecturing has a great advantage but the less practised may also make his mark if he will but take advice. I cannot here give all the advice which is necessary but if the author works in a laboratory with a senior colleague he should ask to be allowed to read the paper to him just as he proposes to do it on the evening and hearken to his comments. If he is working independently, he should find a senior member to help him or if he does not know any approach one of the officers of the Society for assistance. I am sure that all of us will help whenever we can. I have used the words “reading the paper,” and here is my last piece of advice.Never read from a manuscript learn it by heart or get your subject matter into your mind so that it becomes a speech. It is far better for portions to be acci-dentally omitted than to keep your eyes glued on the manuscript all the time. It is also no good giving every detail of your process; few of your listeners can follow all the details. Give the outline and show how your process is an improve-ment on the previous work. Lastly never read tables; give them in summary form or on the blackboard or on lantern slides. During the last few months I have been musing over a choice of subject that I should take for my address to you to-day and have been flirting with many ideas. At one time I re-read those presidential addresses which I have heard delivered during the period of my membership in the hope that I might gain inspiration.When I turned to the old stalwarts who gave two addresses I found the first that I heard were those of Bolton and my memory of his addresses was his concern for the ablutions of the chemist. Then followed Hinks who, whilst taking his duties very seriously at the same time gave us little sparkling touches of humour which helped us to assimilate and appreciate the value of his contributions. Dunn was the next and my memory of his was the delivery, aided by his charming and one would almost say musical voice so that one fancied one could hear the harpsichord playing old English melodies. His addresses, too were monumental in their value and usefulness and they were none the worse Secondly leap at the chance of reading the paper in person 240 ADDRESS OF THE RETIRING PRESIDEXT for the fact that they were written out in his fair handwriting on the backs of old galley proofs of THE ANALYST.The next President Arnaud went away into the fields and gave us a dissertation on the work of the Agricultural Chemist of to-day from which I may say I learnt more on this subject in one short hour than I can ever remember learning on similar occasions. The last in my list is one from Wales whose name you will remember is Evans and with that gift so often seen in his countrymen of poetical interpretation mixed with a belief in fairies an awe of the supernatural and a profound respect for Mother Earth and all that comes therefrom he was able to show that the Cinderella of Chemistry-Analytical Chemistry- was rapidly producing magical coaches from pumpkins.Ladies and Gentlemen I am sure you will appreciate that I turned away from these addresses with a feeling that after the glamorous nights of vintage orations of which you had all partaken so freely in the past my non-vintage effort would leave you nothing but a terrible headache in the morning. My choice has finally fallen upon the toxicology of the narcotic drugs. I cannot pretend that in the short time at my disposal my survey will be profound or complete but it will be in essence an account of a number of these drugs based upon my personal experience. THE TOXICOLOGY OF THE NARCOTIC DRUGS THE BARBITuRATES.-These drugs are cyclic ureides prepared by com-bination of malonic acid with urea the hydrogen atoms of the CH group of the former substance being replaced by a variety of alkyl and phenyl groups.Further, a hydrogen atom of an alkyl group may be replaced by a bromine atom as occurs in Noctal and an alkyl group may replace the hydrogen atom of one of the CONH-groups. It will thus be seen that the number of possible ureides that may be prepared is legion; in actual fact there are only about seventeen of these substances on the market. Recently a new series namely the thiobarbiturates in which the oxygen of the terminal CO-group is replaced by sulphur has been placed on the market but only one or two members are in use. I have had an opportunity of examining one or two cases when a full medicinal dose of Pentothal has been given and find that the drug is excreted in the urine and can be extracted therefrom by the methods in use for the ordinary barbiturates.I have not had much experience of the thiobarbiturates yet but it is probable that sufficient can be recovered to determine the melting-points and mixed melting-points. All the barbiturates are definitely hypnotic and fall into two main groups: (1) where the narcosis is relatively light but is long-lasting and (2) where the narcosis is deep with great relaxation but the duration is relatively short. An example of the former is Verona1 (diethyl barbituric acid) and of the latter Evipan (rc-methyl-c-c-cyclohexenyl-methyl barbituric acid). From these properties it will be realised that members of the former group are used for insomnia and members of the latter group for anaesthetic purposes.The barbiturates cannot be called drugs of addiction although from time to time their One of these is called Pentothal ADDRESS OF THE RETIRING PRESIDENT 241 continued use will bring about dependence on them inability to do without them, and in a few cases a true addiction which may result in mental degeneration etc. The barbiturates are not cumulative in their effect but when they are in regular use every day it may happen that complete excretion of a previous dose has not been effected by the time the next dose is taken. In such a case abstinence for a few days from the drug will result in complete elimination. My observations on poisoning by barbituric drugs are based on the study of considerably over 100 cases.Unfortunately the records of many cases are not available; consequently I propose to discuss only those 100 cases of which there is some record. Of these a few were investigated by my late colleague John Webster and with some of the others I have been helped by assistants in particular by my present assistant Dr. Slater who has been invaluable to me. In this series of 100 cases all have been uncomplicated cases of barbituric acid poisoning except a few in which drugs such as amidopyrine have also been taken as for example with Allonal a proprietary remedy consisting of a barbituric acid mixed with amidopyrine. I have had cases of mixtures of for example morphine or cocaine with a barbituric acid but they are not included in this series.Cases also have passed through my hands in which mixtures of these drugs have been taken and in one case no less than four were taken namely, AlIonal Veronal Quadronox and Ipral. Investigations of cases of poisoning in which this class of drug is suspected fall into two categories (1) those in which the patient is found comatose and a rapid diagnosis is required by the physician for treatment purposes and (2) those in which proof of the nature of the drug taken is required to be given as evidence. (1) In the first group the analyst has to sacrifice everything to speed even at the risk of a possible mistake being made occasionally although so far our analyses have been correct. Life and death are at issue and unless the proper treatment is applied at once the consequences may be fatal.A competent physician should in the majority of cases be able to diagnose barbituric acid poisoning but he is always glad of laboratory confirmation. The analyst should be able to give this in about 15 minutes. A direct extraction of the acidified urine with ether will remove the barbituric acid present and the residue after evaporation should have three properties : (a) It should be crystalline. This is not always the case as certain barbiturates e.g. Soneryl Hebaral and sometimes Luminal and Dial etc. will not always crystallise readily from the crude ethereal extract. Veronal will always cry st allise. (b) (c) I believe that if (b) and (c) are positive and better still if all three are positive, I am justified in telling the clinician that he is dealing with a case of barbituric acid poisoning.One of the recognised parts of the treatment of barbituric acid poisoning is to perform a lumbar puncture and if the fluid from this is available, its ethereal extract will contain the barbiturate. When these tests are applied to cerebro-spinal fluid and positive results are obtained the results are in my opinion, A positive reaction should be obtained with Millon’s reagent. A positive reaction should be obtained with the cobalt test 242 ADDRESS OF THE RETIRING PRESIDENT much more conclusive. Although the quantity of the cerebro-spinal fluid generally available is such that it contains only a fraction of a milligram of the barbiturate, this quantity is ample for tests ( b ) and (c) and the microscope will reveal (a).(2) Proof of the presence of a barbiturate for the purposes of evidence is, however on a different footing. Here the problem resolves itself into the puri-fication of the barbiturate sufficiently to be able to rely on the weight found and on the melting-point and mixed melting-point of the particular barbiturate present. Although with Veronal and usually with Luminal this should be easy many of the other members present difficulties because they are not readily obtained in crystalline form and for other reasons with which I shall deal later. Generally speaking the analyst will find that the stomach contents and stomach washings are likely to yield the barbiturate in the purest form for this purpose the viscera next and the urine last.It is very rare that sufficient barbiturate is obtained from the cerebro-spinal fluid for a melting-point determination. In connec-tion with the melting-point it must be realised that one never gets the correct melting-point but always a value several degrees lower; if a value roughly inter-mediate between this and the correct melting-point is obtained with the mixture, I consider it safe to state the nature of the barbiturate present. The mixed melting-point is especially important as no less than four members of this group on the market melt between 168" and 172" C. The fate of the barbiturate in the body varies considerably with the particular member of the group. Thus in cases of Veronal poisoning after a dose of say 50 to 80 grains quantities of the order of 260 mg.may be found in the urine and in one case I found 1.2 g. in the urine which was equivalent to 397 mg. per 100 ml. of urine. Veronal therefore is not easily broken down in the body and sufficient is excreted to enable it to be identified with ease. In my Luminal series I have never found more than 120 mg. in the urine, and quantities of the order of 30mg. are common. With Dial however except in one case in which 25 mg. were found I have never found more than traces with which the determination of a melting-point was impossible. This difference of course is in part due to the fact that the average fatal dose of the two latter is only about two-thirds that of Veronal but it is mainly due to the fact that the rate of decomposition of the drugs in the body is considerably higher for Luminal and Dial than for Veronal.The former will contain little if any of the drug if the patient is found in a state of coma which has lasted several hours before discovery and in the case of the viscera those drugs which are easily found in the urine will readily be found in the liver and kidneys whereas those which are only found in traces in the urine will only be found in traces in the viscera owing to rapid decomposition. Thus it will often happen that the analyst can only say in the witness box in the case of some barbiturates that he has found what are probably traces of a barbiturate. The cause of death then resolves itself into (1) the presence of the characteristic clinical picture and (2) a knowledge of the particular barbiturate present from for example the finding of a bottle beside the bed.Nevertheless the finding of a trace of a barbiturate only, coupled with the clinical picture and the knowledge e.g. that Dial was probably So too with the stomach contents and the viscera ADDRESS OF THE RETIRING PRESIDENT 243 taken enables the analyst to say that his findings are consistent in that he would only expect to find traces of this particular drug. I do not propose to draw any conclusions from drugs such as Hebaral Soneryl and Sandoptyl and Rutonal and so on as my cases are too few for any generalisa-tions save to say that moderate quantities appear in the urine; although extracts from this source do not crystallise easily sufficient should be obtained for the determination of the melting-point .It is fashionable for certain firms to compound a barbiturate with amido-pyrine e.g. Allonal Veramon Cibalgin and so forth. Poisoning in these cases presents an additional picture. The stomach contents may show if absorption is not complete the presence of a barbiturate (extractable in acid ether solution) and amidopyrine (extractable in alkaline ether solution). The viscera in my experience may show the barbiturate (according to its nature) but will not show the presence of the amidopyrine. The urine however is so characteristic that a glance demonstrates that an excessive quantity of amidopyrine has been taken. The urine if acid is deep red in colour but it changes colour to purple if alkalised, especially if ammonia is used.This colour is due to a pigment rubazonic acid, which is formed together with antipyryl-urea from amidopyrine in the tissues. Both these bodies if present in sufficient quantity can be isolated from the urine by appropriate treatment. In my series of barbiturate cases two of the hundred have been murders a few have been accidents where persons in bad health have taken doses which have been within medicinal limits and in the remainder the cause might have been put down to suicide. Undoubtedly many of the cases were suicidal the evidence at the inquest clearly pointing in that direction but a number of cases have passed through my hands in which the alleged motive has appeared to be insufficient and indeed there appears in some cases to have been but little motive at all.Medical experience shows that a very large number of persons more especially women never take a night’s rest without a tablet of a barbiturate and occasionally, when this fails to produce the desired effect a second is taken. This is not likely to do any harm but recently medical men have been calling attention to a somewhat indefinable stuporous state in which an individual after taking one or two tablets, might take a whole packet and in consequence be found unconscious in the morning. I can remember definitely three cases of this type in the last two or three years, and had my attention been drawn to this possibility earlier I could no doubt add others. It is well known that women take these drugs regularly more than men, so that it is not surprising that my series of poisoning cases show 63 per cent.of female and 33 per cent. of male cases (records of the remaining 4 per cent. being incomplete) which again to some extent supports the accident theory. In my series 56 per cent. died and 29 per cent. recovered leaving 15 per cent. in which I do not know the issue. If however I were to analyse further this series I could show that the percentage of recovery was far higher in the last 6 to 7 years than in the years previous to this period. This is due to improved methods of treatment worked out mainly by Sir William Willcox and Sir James Purves Stewart. This is no place to discuss treatment but I will say that one of the most important factors is the This we have done 244 ADDRESS OF THE RETIRING PRESIDENT frequent performance of lumbar or cistern puncture coupled with saline injections and washing out of the stomach (with neutral or acid not alkaline liquid) and the colon and powerful stimulants e.g.strychnine in full doses. As I have examined material from all these sources I can from the presence of a drug in the washings, speak of the importance of the treatment. Nor is this the place to discuss the clinical state but I would mention that the most serious complication is develop-ment of bronchial pneumonia accompanied by a rise of temperature which may supervene at any time after about the first 24 hours and every case dykg after this period will show this condition. This complication renders the prognosis more grave. Without my discussing the clinical features in greater detail you will appreciate that for this and other reasons the clinical picture of poisoning by the barbituric acid group is not merely that of unconsciousness but uncon-sciousness associated with certain features which will generally enable a diagnosis t o be made.STRAIGHT-CHAIN UREIDES.-The next group of narcotic drugs sometimes called the straight-chain ureides are derived from mono-carboxylic acids and urea. Although there may be several of these drugs on the market two only are known to me and need be considered. They contain an atom of bromine. These are Adaline and Bromural. Adaline Bromural C2H5 Br \P/ /\ C,H CONHCONH, (CH3),CH Br \P/ 7\ H CONHCONH, These drugs are much less powerful than the barbiturates and are consequently safe hypnotics.When taken in large doses they do not produce the broncho-pneumonia which is so characteristic of the barbiturates. They are only slightly soluble in water and of course not being acids do not form salts. They are soluble in ether and in benzene so that if a mixture of a barbiturate and one of these drugs be encountered a fairly good separation may be achieved by ex-tracting the material with benzene to remove Adaline etc. and subsequently extracting with ether in acid solution to separate the barbiturate. Leschke in his Clinical Toxicology is unable to record any fatal cases of poisoning by these drugs and is able to cite a recovery after 150 grains of Bromural. I have had six cases through my hands and although my records are very in-complete I am able to cite three fatal cases and two recoveries.The other was a recovery so far as the drug was concerned. Before referring briefly to these cases I would add a word about the analysis. In none of these cases where it has been possible to analyse the organs or the urine or both have these drugs been found. They are readily broken down in the body and I have never detected the drug in the tissues or the urine. In one case the drug was found in the stomach and contents i.e. some of the drug which had escaped absorption. One finds bromide in large quantities in the tissues and in the urine so that in the majority of cases one is able to say that the analysis is consistent with this class of drug having been taken ADDRESS OF THE RETIRING PRESIDENT 245 Case 1.Case 2. Urine only examined bromine only found. Probably a mixture of Adaline and Bromural taken. Known to have taken a mixture of Adaline and Bromural. Patient believed to have recovered. Three-fifths of a grain of the mixed drugs found in the stomach and contents or rather the mixture was assumed. Large quantities of bromine in liver, kidneys and urine. Patient recovered but killed himself by opening the radial artery in a hot bath. Died in coma bromine only found in viscera and urine. History of having taken Adaline quantity unknown. Known to have taken up to 300 grains of Bromural and Adaline in proportions of 15 of Bromural to 5 of Adaline. Urine only examined. Large quantities of bromine only found. Died. Case 5 . Bromine only in urine.Believed to have recovered. Case 6. Large quantities of Adaline taken. Liver only examined. Bromine only found. Died. Case 3. Case 4. Believed to have taken up to 500 grains of Adaline. Of these cases two were females and four were males. It will thus be seen that one has to be very cautious in these cases and in not one of this series was the nature of the drug established by analysis. Nevertheless, if there is a history of the taking of the drug coupled with the presence of bromide and failure to find by analysis any other hypnotic drug and the post-mortem fails to reveal a cause of death one is entitled by inference to draw the conclusion that one or both of these drugs have been taken or putting it at its lowest that the findings are consistent with such a drug having been taken.These drugs on extraction from stomach contents will yield a crystalline residue but the Millon and cobalt tests are negative.* A quick diagnosis for clinical purposes may be made by a soda fusion and test for bromine in the urine. The broncho-pneumonia features so consistently seen with the barbiturates are not seen in these cases and death is probably a primary cardiac failure as a very low blood pressure is found towards the end. MORPHINE.-The series of cases on which I shall base my observations is of course very much smaller in number than the barbiturate series and numbers only 30 apart from four cases of morphine and barbiturate. With the exception of one case they are not of special interest. The one case is of interest in view of the amount taken by the suicide.In this case I found 4 grains of Verona1 in the urine, 10 grains in the stomach and contents (post mortem) and during life 212 grains in the stomach washings i.e. 226 grains. In addition 10 mg. of morphine were found in the urine. The infrequency of this poison when compared with barbituric acid is of course due to the operation of the Dangerous Drugs Act, and although this Act was in operation during the period under consideration, there is no doubt that in the immediate post-war period many non-medical persons had possession of stocks of morphine. It is probable that during the next few *With pure Adaline or Bromural or both in concentrated solution a faint positive cobalt reaction may be obtained 246 ADDRESS OF THE RETIRING PRESIDENT years we shall see a decline in the number of barbituric acid cases as this group of drugs is now in Schedule 4 of the Poisons and Pharmacy Act 1932 which means that the drugs can only be obtained with a medical prescription.Of my 30 cases 20 were men and 10 women and 26 of them died leaving 4 whose fate is unknown. Four were cases of homicide of which 2 were the subject of a prosecution. It will be seen that this drug is in more common use by males than by females and it is much more fatal than those already considered. There are some points in the analysis and the deductions therefrom which may be worthy of note. First I would say that I have never experienced any difficulty in isolating morphine in quantity from viscera by the ordinary Stas-Otto process.In our laboratory we have traditionally (dating I believe from Sir Thomas Stevenson) used ethyl acetate as the extracting solvent. Although many workers use amyl alcohol and others favour the alcohol chloroform of Nicholls our experience has been that both these solvents extract so much other organic material present in tissue extract that purification of the morphine is troublesome. Ethyl acetate may not be such an efficient solvent but it is more selective. Secondly as a broad generalisation we have found that the Stas-Otto process works more smoothly on liker that is rather decomposed than when practically no decomposition has taken place and in general this applies to most alkaloids. Thirdly it has always been the practice in our laboratory when evaporating alcoholic extracts not to heat them above 40-50" C.Although the process is slow, we believe this to be a golden rule to success in alkaloidal work and at the same time we take the greatest care to have the liquids only faintly acid. Again this has been traditional since Stevenson's time but it has worked well now for four generations, and I should be disinclined to change the practice until I had the most convincing proof of a superior one. Finally any process used must be capable of finding any alkaloid that may be present. The analyst may start with a knowledge that he may expect morphine, but unless his process is capable of detecting other alkaloids he may find himself in grave difficulties at a later stage. In dealing with cases of morphine poisoning some of which have given me more anxiety than those with any other alkaloid it is necessary to realise that three results may be obtained and the medical deductions from the results of the analysis will lead to these three possibilities.Although perhaps I ought not to say it here, it is my firm conviction that the toxicologist should be a medical man with chemical training. This combination is essential in order that the whole picture from the details of the illness right to the analysis and the deductions therefrom may be in his mind for the final opinion. I say this not from any personal point of view, but from a long experience of cases which have come my way and of cases in which I have not been engaged but about which I have had full knowledge.To return to the three types of case. First Groz@.-These are simple cases of an overdose of the drug for suicidal or homicidal purposes where there is no question of addiction to the drug. In these cases the illness usually lasts from 6 to 12 hours as contrasted with barbiturate cases in which I have known the coma to last as long as 6 days. In this short tim ADDRESS OF THE RETIRING PRESIDENT 247 much of the morphine will escape destruction and consequently plenty will be found on analysis. We have found as much as 10.5 grains in the stomach and contents with 2 grains in the liver and 0.5 grain in the kidney. Quantities from 0.5 to 2.5 grains in the stomach and contents and from 0-2 to 1 grain in the liver, have several times been found. In morphine cases as indeed in all cases where a drug has been administered by hypodermic methods and where the puncture mark is visible the skin area, together with some of the muscle tissue underlying should be fairly widely excised.When this is submitted to an analysis morphine will as a rule be readily found. The urine too should always be saved in all cases of narcotic examination as in practically every case the presence here too of the drug will be established. The cause of death in these cases will rarely if ever be in doubt and the matter is a simple one. Second Group.-From time to time cases come into the analyst’s hands where it is known that the deceased was a morphine addict and that death appears to be from unnatural causes. The deceased may have taken a quantity of morphine far in excess of the usual daily dose or as appears to be probable in some cases, death may have been due to a sudden intolerance to the drug and an analysis will be required.In these cases although there may be evidence that a very large quantity of morphine has been taken a quantity far in excess of what is regarded as an average fatal dose the analyst will find only traces of morphine in the viscera and in some cases he will have the greatest difficulty in establishing the presence of morphine. In fact I have on more than one occasion suggested t o the Coroner that in view of the belief that the deceased from the clinical and post-mortem picture had taken morphine while my analysis has shown only traces of the drug the deceased was addicted to the drug and subsequent enquiry has established the correctness of the supposition.The whole question of addiction would appear to be bound up with an increased power to destroy the drug in the tissues and despite the sudden loss of tolerance to the drug which sometimes occurs and which results in grave mental change it would appear that this power to destroy the drug is a reaction of the tissues to the ingestion of an abnormal substance which once acquired is not lost. Third groz@.-(Morphine in the exhumation case.)-From time to time it has been my duty to examine the viscera in cases where bodies have been exhumed after various periods the longest being 19 months after burial. Naturally the finding of morphine in such cases will depend on many factors, e.g. the amount of morphine taken conditions of burial state of the body and so on.Nevertheless in this case I found definite evidence of the presence of morphine so that in some cases it is possible to demonstrate this poison in viscera after periods as long as 19 months. In the case in question the body was that of an old man with but little fat well coffined in an oak coffin and buried in a clay soil where very little change of temperature moisture or air would be likely to occur with the result that the body was well preserved. Although I have stated that morphine was detected this is strictly incorrect as I actually found oxydimorphine or pseudomorphine. This change occurred in the three exhumation cases in which I have been concerned and where this drug was i 248 ADDRESS OF THE RETIRING PRESIDEKT question and was found; and in a fourth case not an exhumation where the stomach contents only were available and where these contents had been kept by the Coroner for nearly 14 days with the result that gross decomposition had occurred the change was also observed.The last case illustrates three points: (1) the change from morphine to pseudomorphine does occur in decomposed viscera; (2) morphine given hypodermically will be found in the stomach and contents; (3) even after a dose of 1/4 grain given three hours before death, morphine may be detected and in this case I would add that the administration of the morphine was not known to me until after my analysis was complete and as the result of enquiries made by me. The important test which serves to differentiate between morphine and pseudomorphine is of course the Marquis test and in this connection I looked up one of the causes cille’bres in which a conviction for murder was obtained after this drug had been found in an exhumation case after 8 weeks’ burial.I refer to the case of The People ofthe State of New York against Carlyle W. Harris. This case was brought to a successful conclusion through the brilliant work of the late Prof. Witthaus whose textbook on toxicology although perhaps somewhat out of date (the last edition being 1911) still in my opinion remains the classical work on this subject. I was interested to see whether Witthaus had in fact found morphine or pseudomorphine. Although it would appear that some of the colour reaction tests made by him and described in his evidence would point to the presence of morphine rather than pseudomorphine it is interesting to note that the Marquis test was not published by its discoverer until 1895 whilst the trial to which I have referred took place in 1892.The difficulty of describing some of the colour reactions of morphine in visceral extracts is well known and although it would appear that Witthaus had some evidence to justify the finding of morphine, one cannot help wondering whether he would have reported the presence of pseudomorphine had the Marquis test been available at the time of his analysis. While on the subject of textbooks one cannot but deplore some of the statements which are copied from book to book for generations. One for example, is the statement often quoted in the Coroner’s Court that the smallest fatal dose of Tinct.Opii. recorded in an adult is 2 drachms. This case is recorded in the Edin. Med. and Surg. Journal July 1840 p. 151. Expressed as morphine in terms of the tincture of to-day this is equivalent to 1.3 grains of morphine. What was the amount in 1840? First opium was not standardised ; secondly according to Henry (Plant Alkaloids) the strength of opium may vary from 3.2 to 12.3 per cent. of morphine; thirdly in those days chemists made their own tinctures with variable skill had no means of standardisation and weights and measures were not of the highest accuracy. The Pharmacopoeia of that date only says: “Take hard opium and proof spirit and when made about 19 minims should contain one grain of opium.” Therefore two drachms would contain about 0.6 grain of morphine if opium contains 10 per cent.of morphine. But having regard to the possible variants in the making of such a tincture in 1840 I think it is quite impossible to calculate how much morphine the deceased actually took, so that it would seem futile to continue recording such a worthless observation. This is an example of many unsound observations which abound in textbooks o ADDRESS OF THE RETIRING PRESIDENT 249 this subject and it is to be hoped that one day a book will be written which has eliminated such misleading and unreliable statements. In my series of morphine cases a few were opium cases which necessitate the search for meconic acid but the majority were morphine cases.Two were chlorodyne and two probably heroin cases. I have not dealt in detail with the symptomatology of morphine poisoning, as there is but little to say. The patient passes from sleep to coma and from coma to death generally within 12 hours. Cyanosis is marked owing to the action of the drug on the respiratory centre and towards the end the respiratory rate may slow down to about 4 per minute. At the time of death the heart may beat for a while after respiration has ceased. Everyone knows that the pupils are con-tracted in poisoning by this drug but this requires a word of warning. This effect is central in origin i.e. originating in the brain but when the final paralytic stage is reached the pupil often relaxes and becomes dilated. On several occasions I have known the failure to appreciate this fact lead to a faulty diagnosis and it has only been the subsequent analysis which has demonstrated that morphine and not atropine was the poison used.The following list gives the melting-points of the barbituric acid compounds now on the market and also the melting-points of certain of the other common hypnotic drugs. These values have actually been found in our laboratory and the deter-minations have been made on the substances extracted and purified from tablets and so forth. The list also gives most of the names under which these substances appear on the market. So far as the barbiturates are concerned it will be ap-preciated that the majority of them are marketed as the corresponding sodium (and in one case calcium) salt.There are a large number of compounded proprietary drugs on the market which contain barbiturates mixed with other substances but it is impossible to give a complete list of these. Soneryl Neonal Butyl-ethyl barbiturate . . Hebaral Ortal Hexyl-ethyl barbiturate . . Pernocton Butyl-bromo-ally1 barbiturate . . * . Sandoptyl Isobutyl-ally1 barbiturate . . . . Evipan N-methyl-c-c-cyclohexenyl-methyl barbiturate . . Amytal Isoamyl-ethyl barbiturate . . . . . . P hanodorm C yclo hexen yl-e t h yl barbiturate . . . . Dial Currial Allobarbitonum Diallyl barbiturate . . . . . . Prominal N-met hyl-et hyl-phenyl barbiturate . . . . Noctal Bromopropanyl-isopropyl barbiturate Ipral Ethyl-isopropyl barbiturate . .) Rutonal Phenyl-methyl barbiturate .. . * . . Proponal (not now on the market) . . . . butyl-(5)allyl barbituric acid . . . . . . Pent ot hal Et hyl-met h yl-but yl- t hio-bar biturate . . . . Nembutal Pentobarbital. Ethyl-isomethyl-butyl barbiturate . . Allonal Allyl-isopropyl barbiturate (mixed with amidopyrine) Numal Luminal Phenobarbitonum Gardenal Phenyl-ethyl barbiturate . . Veronal Barbitone Malonal Hypnogen Di-ethyl barbiturate . . Seconal Prop yl-me t h yl-c arbin yl ally1 barbiturate (5) a- Met hyl-n-m.p. of acid O C . 1 2 3 4 126 130 132 141 155 138-9 144-5 168-9 168-9 170-1 171-2 176-7 191 198 221 145 -156-250 TOMPSETT THE DETERMINATION OF BISMUTH IN BIOLOGICAL MATERIALS m.p. of acid C. Adaline Carbromalum Uradal Nyctal Planadalin etc.Brorno-ethylbutyryl carbamide . . 116 Bromural Bromoisovalum Bromo-isovaleryl carbamide . . 145 Sedormid Allyl-isopropyl-acetylurea . . 194 Sulphonal . * 126 Trional Methyl sulphonal . . 1. * . 76 -For the purpose of illustration the histories of a few selected cases are given in the accompanying table. In conclusion I desire once again to pay a tribute to my officers and without making distinctions I would specially desire to mention Dr. Hughes and Dr. Mitchell who have both for so many years given us devoted service and to whom we owe the present prosperous state of the Society. Mr. Eynon I can say from personal experience has given his best to us and I can assure you it is a very good “best,” and I am convinced from my experience of Mr. Lane that our choice of him as Secretary could not have been bettered. Lastly I would pay a tribute to the Members of Council who devote so much time to the meetings and who in many instances are so willing to come at their own expense from long distances. Increasing work has made it difficult for me to carry out my duties with the efficiency that I should have liked but on the other hand it has been a real pleasure to me to play a part in the direction of the Society’s affairs and I can assure you that as a Past President on the Council it is my intention in the future to do everythingin my power to further the interests of the Society. I now leave the President’s chair and I do so with mixed feelings
ISSN:0003-2654
DOI:10.1039/AN9386300237
出版商:RSC
年代:1938
数据来源: RSC
|
| 5. |
The determination of bismuth in biological materials |
| |
Analyst,
Volume 63,
Issue 745,
1938,
Page 250-252
Sidney Lionel Tompsett,
Preview
|
PDF (322KB)
|
|
摘要:
426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents.It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate.There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international.The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively.Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies. Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited.The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation.Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE.By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time.The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice.Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years.The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion.The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies. Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on.Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction
ISSN:0003-2654
DOI:10.1039/AN9386300250
出版商:RSC
年代:1938
数据来源: RSC
|
| 6. |
A test for traces of oxidising agents in milk |
| |
Analyst,
Volume 63,
Issue 745,
1938,
Page 252-256
R. C. Wright,
Preview
|
PDF (495KB)
|
|
摘要:
426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents.It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate.There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international.The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively.Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies. Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited.The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation.Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE.By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time.The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice.Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years.The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion.The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies. Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on.Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation.Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp.15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international.The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction
ISSN:0003-2654
DOI:10.1039/AN9386300252
出版商:RSC
年代:1938
数据来源: RSC
|
| 7. |
The determination of parachlorometaxylenol in antiseptic solutions |
| |
Analyst,
Volume 63,
Issue 745,
1938,
Page 257-259
R. P. Merritt,
Preview
|
PDF (280KB)
|
|
摘要:
426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents.It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate.There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international.The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively.Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies. Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited.The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation.Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE.By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time.The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction
ISSN:0003-2654
DOI:10.1039/AN9386300257
出版商:RSC
年代:1938
数据来源: RSC
|
| 8. |
The determination of ethylene glycol |
| |
Analyst,
Volume 63,
Issue 745,
1938,
Page 259-261
R. Cuthill,
Preview
|
PDF (241KB)
|
|
摘要:
426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents.It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate.There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international.The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively.Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies. Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited.The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation.Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE.By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time.The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction
ISSN:0003-2654
DOI:10.1039/AN9386300259
出版商:RSC
年代:1938
数据来源: RSC
|
| 9. |
Notes |
| |
Analyst,
Volume 63,
Issue 745,
1938,
Page 262-266
J. F. Brown,
Preview
|
PDF (493KB)
|
|
摘要:
426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents.It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate.There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international.The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively.Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies. Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited.The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation.Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE.By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time.The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice.Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years.The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion.The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies. Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on.Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation.Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp.15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international.The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction
ISSN:0003-2654
DOI:10.1039/AN9386300262
出版商:RSC
年代:1938
数据来源: RSC
|
| 10. |
Notes from the Reports of Public Analysts |
| |
Analyst,
Volume 63,
Issue 745,
1938,
Page 267-268
Preview
|
PDF (221KB)
|
|
摘要:
426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international. The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr.Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively. Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies.Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited. The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents.It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate.There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction426 REVIEWS INKS : THEIR COMPOSITION AND MANUFACTURE. By C. AINSWORTH MITCHELL, D.Sc., F.I.C. Fourth Edition. Pp. xi + 408. London: Charles Grihn tt Co., Ltd. 1937. Price 12s. 6d. net. This, the fourth edition of the standard and, indeed, so far as the reviewer’s knowledge goes, the only text-book on the subject in the language, bridges L gap of 13 years. The author, pre-eminent in his particular sphere, needs little more introduction to the world of technical industry than he does in his official capicity to readers of THE ANALYST, while his reputation in forensic science in all that appertains to handwriting is international.The chemistry of ink, difficult as it is and at times not a little obscure, hcl- riot developed markedly in the interval since 1924; but what progress has been made is covered by Dr. Mitchell in this edition in a very thorough manner. He has found it necessary to enlarge his work to the extent of some 20 per cent. and, in addition, to rewrite a large portion. The arrangement of the book follows the lines of previous editions. After a comprehensive historical introduction, the work is divided into three sections dealing with writing inks, printing inks, and inks for miscellaneous purposes, respectively.Under Section 1 are considered the chemical nature and treatment of the various raw materials used for writing inks from lcmp black to galls, the composition of finished iron-gall, logwood, vanadium, aniline black, and coloured inks, as well as a comprehensive scheme €or the tech~ical examination of inks, handwriting specimens and the identification of forge:-ies. Section 2 deals with the manufacture and examination of printing inks. ,tnd Section 3 with the miscellaneous materials entering into the compositilxx of copying, marking, safety, sympathetic, typewriter inks and so on. Amongst new matter may be noted references to the use of lignone sulphni--,ites in connection with writing ink, a scheme for the identification of individual con- stituents in inks in the form of writing, and the application of filtered ultra-.& if )let light and of infra-red photography in the elucidation of those problems to which such methods are suited.The British Government Standard Specificatior:s for Writing Inks, revised in 1928, are included for the first time. The avaihble evidence upon the constitution of gallotannin is brought up to date and <tbly reviewed, and there is a Comprehensive list of British patents. It is as difficult to withhold admiration of the encyclopaedic scope cjf the matter and references in this book as it is of the erudition and industry displiiyed in its compilation. Practically nothing that comes to mind has escaped atterition, and it is with rather impish glee that the reviewer, after careful search, asserts that he finds no specific reference to the type of alkaline (ammoniacal) gallotannate- iron ink, said t o find favour in the United States, although the di-ammonium hydroxyferrigallate compound of Silbermann and Ozorovitz receives notice. Nor is there mention of that class of quick-drying writing fluids which depend for their efficiency upon partial destruction of the paper sizing by caustic alk 1.5 or sodium silicate. There is no evidence that lignone sulphonate inks have proved se-rious competitors to iron-gall writing inks (pp. 15 and 175). Apart from the unkttmwn quantity of permanence, the principal failing of this type lies in their liability to contain traces of free sulphurous acid to which suspicion attaches in connt-ction
ISSN:0003-2654
DOI:10.1039/AN938630267b
出版商:RSC
年代:1938
数据来源: RSC
|
|