首页   按字顺浏览 期刊浏览 卷期浏览 Fundamental thermodynamics and experiments in fabricating high efficiency CuInSe2solar ...
Fundamental thermodynamics and experiments in fabricating high efficiency CuInSe2solar cells by selenization without the use of H2Se

 

作者: D. Albin,   J. Carapella,   A. Gabor,   A. Tennant,   J. Tuttle,   A. Duda,   R. Matson,   A. Mason,   M. Contreras,   Rommel Noufi,  

 

期刊: AIP Conference Proceedings  (AIP Available online 1992)
卷期: Volume 268, issue 1  

页码: 108-121

 

ISSN:0094-243X

 

年代: 1992

 

DOI:10.1063/1.42926

 

出版商: AIP

 

数据来源: AIP

 

摘要:

Selenization is the current process by which state‐of‐the‐art CuInSe2polycrystalline thin‐film photovoltaic modules are industrially fabricated. The distinguishing characteristic of this approach is that material deposition is separate from compound formation. In conventional selenization, In‐Cu layers, often referred to as precursors, are deposited on molybdenum‐coated glass substrates and subsequently transformed into CuInSe2following exposure to a selenium‐containing environment. Although the highly toxic gas, H2Se, has been considered a necessary component of selenization, recent safety concerns have accelerated the development of Se vapor as a possible substitute for H2Se. In more recent variations of the process, solid selenium is incorporated during the precursor fabrication step, and subsequent thermal annealing is used to form compounds among the three elements. In this paper, we discuss the thermodynamic fundamentals of selenization using elemental Se as an alternative to H2Se. This discussion is augmented by empirical observations drawn from our own efforts in fabricating efficient (≳10%) CdS/CuInSe2devices by selenization in thermally‐evaporated Se vapors. Indium transport, presumably via the formation of In2Se or InSe gaseous species, dominates the kinetics of selenization using sequentially evaporated (indium on copper) precursors, while lateral phase separation was observed in the case of co‐deposited In+Cu precursors.

 

点击下载:  PDF (1457KB)



返 回